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Healthcare-associated infections (HAIs) pose a significant burden

to patient safety. Institutions can implement hospital infection

control (HIC) measures to reduce the impact of HAIs. Since patients

can carry pathogens between institutions, there is an economic

incentive for hospitals to free ride on the HIC investments of other

facilities. Subsidies for infection control by public health authori-

ties could encourage regional spending on HIC. We develop cou-

pled mathematical models of epidemiology and hospital behavior

in a game-theoretic framework to investigate how hospitals may

change spending behavior in response to subsidies. We demon-

strate that under a limited budget, a dollar-for-dollar matching

grant outperforms both a fixed-amount subsidy and a subsidy on

uninfected patients in reducing the number of HAIs in a single

institution. Additionally, when multiple hospitals serve a com-

munity, funding priority should go to the hospital with a lower

transmission rate. Overall, subsidies incentivize HIC spending and

reduce the overall prevalence of HAIs.

nosocomial infection | antimicrobial resistance | subsidy | game theory

Healthcare-associated infections (HAIs) are a serious danger
to patient safety (1–3). In the United States roughly 1.7 mil-

lion patients admitted to hospitals each year contract an HAI (4).
HAIs cause increased mortality, longer hospital stays, and a large
financial burden for patients and healthcare systems (5). Fur-
thermore, HAIs are linked to the development of antimicrobial
resistance in pathogenic bacteria (6).

Patients and healthcare workers act as vectors that transmit
infections between healthcare institutions. Since the pathogens
responsible for HAIs can persist on body surfaces for long peri-
ods of time (1), when patients discharged to the community
are rehospitalized, they can spread infection and colonization
between hospitals and long-term care facilities (7, 8). Controlling
HAIs is especially challenging since many individuals admitted
are already colonized from other institutions (9).

A hospital that invests in hospital infection control (HIC) low-
ers transmission in its own wards, which decreases the basic
reproduction number R0 of the disease (the number of sec-
ondary cases). This in turn lowers the number of individuals
colonized in the community. Therefore the benefits of HIC in
a single hospital are shared by all institutions that share the same
catchment population. As a result, there is an economic incen-
tive for each hospital to invest less in HIC, free riding on the
efforts of others. This concept has been supported by mathemat-
ical models and data-driven approaches that have shown HAIs
are a regional problem that requires a coordinated effort at the
local scale (9–13).

Policymakers can offer subsidies as an incentive to encour-
age spending and control the spread of HAIs (14, 15). We
develop coupled mathematical models of epidemiology and hos-
pital behavior in a game-theoretic framework to investigate how
hospitals may change spending behavior in response to various
implementations of subsidies. Our focus is to understand how to
use subsidies to incentivize optimal infection control.

Mathematical Model and Analysis

Single-Hospital Game. Consider a single-hospital population
admitted from a large catchment population. Assuming HAI
transmission occurs only within hospitals, we can approximate

the proportion of patients admitted from the community already
colonized as a constant value κ. The dynamics of the propor-
tion of patients colonized within the hospital (represented by the
variable X ) are governed by Eq. 1:

dX

dt
=σ(κ−X )+β(c)X (1−X )−λX . [1]

σX describes the discharge of patients at a rate σ where 1/σ is
the average length of stay in a hospital. σκ represents new colo-
nized admissions to the hospital. Hospital occupancy is assumed
to be constant, so that admissions balance discharges. Finally, the
clearing of colonization occurs at a rate λ. This is a chemostat
hospital model similar to those explored by other researchers (3,
16, 17).

Infection control lowers the transmission rate of the
pathogen, but with diminishing marginal returns. Mathemati-
cally, the function β(c) describes the transmission rate of the
pathogen. This rate depends on the total money invested in
HIC (c), which is a function of the hospital’s spending, h , and
the value of a subsidy, s . The relationship between c, h , and
s will depend on the type of subsidy described below being
offered. For the purposes of the following preliminary calcula-
tions we take this relationship to be of the form β(c)= a

1+b
√
c

,

where a and b are scaling factors. This functional form
originates from Smith, Levin, and Laxminarayan (9) and was
chosen because it is a decreasing function of c with diminishing
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returns and is useful for algebraic characterization of equilib-
ria. Additionally, this functional form does not show sudden
discontinuous shifts in return to spending. In the absence of
data to which we could fit a candidate function, hence the
form chosen is the most parsimonious. More general functions
could be considered in future work, particularly those that
do not have a slope discontinuity at c=0, and may allow for
larger bounds on the results that follow. We did not include
the clearance rate to isolate the influence of spending on
the dynamics of the system. β(0)= a is the intrinsic trans-
missibility of the pathogen when no effort is made to control
infection.
Equilibrium analysis and optimization. A hospital will choose
an optimal value h such that the total costs are minimized.
If the average hospital stay is short [in the United States it
is ≈ 5 d (18)], the system will converge relatively fast to the
equilibrium and we can ignore the transient dynamics. The
total costs to the hospital at equilibrium are the sum of invest-
ment in HIC and the cost incurred for each infected patient.
Therefore, the optimization problem without a subsidy (s =0)
is equivalent to finding the minimum of h +DX̄ (c), where D

describes the excess cost per patient per day at the equilibrium

X̄ (9). Local minima of this function occur if 1+D
dX̄

dh
(c)= 0.

In this simple case, the exact solution can be found via the
quadratic formula. For further details refer to Smith, Levin, and
Laxminarayan (9).

If the proportion of community admissions is nonzero, then
Eq. 1 has two equilibria: One is negative and the other is
strictly positive and therefore the only relevant equilibrium. If
κ=0, then there are two feasible equilibria, one at X =0 and
one at X =1− λ+σ

β(c)
=1− 1

R0
. Since β(c) is in the denomina-

tor in this expression, increasing spending decreases the number
of patients infected at equilibrium. R0, the basic reproduction
number, is defined as a threshold such that when R0 > 1, the
nonzero equilibrium is positive and stable while the trivial equi-
librium is unstable. That is to say, when R0 > 1, the number of
secondary cases one infected individual generates in a wholly
susceptible population is more than one and thus the infec-
tion will spread. When R0 < 1, there is no nontrivial feasible
equilibrium. As R0 varies the system undergoes a transcritical
bifurcation.
Subsidies. In general, when a subsidy is offered by a policy-
maker, the total investment in infection control is a function
of both the hospital spending h and the subsidy s . The policy-
maker is concerned solely with reducing the number of people
infected, usually given some limited budget. We consider three
specific formulations of a subsidy for HIC: a fixed-amount sub-
sidy, a subsidy for each uninfected patient at equilibrium, and a
dollar-for-dollar matching subsidy.

Under a fixed subsidy a predetermined amount of money
s is given to the hospital to spend on HIC. The total invest-
ment in this scenario is then c= h + s and the total costs to
the hospital are h +DX̄ . As shown in SI Appendix, a fixed
subsidy will simply replace a hospital’s own optimum spend-
ing, even for more general forms of β(c). Total costs remain
the same and hospital spending decreases linearly with the
subsidy.

A subsidy for each uninfected patient at equilibrium has total
investment c= h , but the total costs to the hospital are h +
DX̄ − s(1− X̄ ). This type of subsidy is equivalent to increas-
ing the cost D per infected patient. Effectively, this is a tax on
infected patients (SI Appendix) and may result in a negative cost.
As formulated here, we assume that the subsidy value is prede-
termined and reduces a hospital’s total cost after equilibrium has
been reached. Redirecting these funds into HIC without causing
complicated recursion is better suited for a repeated game, which
we do not consider here.

Finally, a dollar-for-dollar matching subsidy implies that for
every dollar a hospital spends on HIC, the policymaker will pro-
vide s dollars to also be spent on HIC. The total investment is
c= h(1+ sm), where s = smh to distinguish between the mul-
tiplicative constant and the cost to the policymaker. The costs
to the hospital are h +DX̄ , the same as in the case of a fixed
subsidy.

As can be seen in Fig. 1, a dollar-for-dollar matching subsidy
appears to outperform the other subsidy types. The number of
patients infected at equilibrium given a limited budget from the
policymaker is lower for the matching grant for the parameter
range and functional forms considered. For this reason, we focus
on this type of subsidy.

We consider a subsidy to be effective if it encourages a hos-

pital to spend more than it would without a subsidy
∂hopt

∂s
>

0. An ineffective subsidy is one where the hospital decreases
spending as the matching subsidy increases. Even if the total
amount being spent on infection control is growing, the pro-
portion paid for by the institution is constant or decreasing. An
ineffective subsidy is an example of policy resistance in which a
policy worsens a problem as a result of feedback and unintended
incentives (19).

Theorem 1 describes the existence criteria for when a matching
subsidy will be effective in the extreme case when κ=0. A hos-
pital will invest at the cheaper option of either the minimum of
the cost function or the amount required to reduce R0 below 1
and eliminate the pathogen. When the intrinsic transmissibility is
high, there will be an interval of effective matching grant values
bounded below by zero.

Fig. 1. For three values of κ (colors), the equilibrium proportion of hospi-

talized patients infected is given as a function of the cost to the policymaker.

To achieve the same number of infected patients, a policymaker spends the

least by using a matching subsidy (solid lines), followed by a fixed subsidy

(dotted lines), and then finally a subsidy for uninfected patients (dashed

lines). The end points of these curves vary because the same range of sub-

sidy spending produces different costs for the policymaker, depending on

the subsidy type. The parameters used to generate this plot are a = 0.6,

b = 0.2, λ= 0.0005, σ= 0.2, and D = 100.
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Theorem 1. A region of effective subsidies will exist for κ=0 when

a >
λ+σ

2

(

1+
√

(1+ 2Db2)
)

= a
∗. [2]

Proof: The minimum of the cost function occurs when 1+
D

∂X̄
∂h

=0. Solving this equation gives

h =

(

Db(λ+σ)

2a

)2

(1+ sm). [3]

The amount needed to eliminate the pathogen (the zero
equilibrium to be stable) is

h =

(

a − (λ+σ)

b(λ+σ)

)2

· 1

1+ sm
. [4]

A hospital will switch strategies from eradicating the pathogen to
minimizing the cost function when the costs of these two strate-
gies are equal. We can solve for the subsidy value at which this
occurs:

s
∗
m =

2a(a − (λ+σ))

Db2(λ+σ)2
− 1. [5]

If a (β(0)) is sufficiently high, this switching point does not exist
and the hospital will always choose to eradicate the infection.

For sm > s
∗
m ,

∂hopt

∂sm
< 0, but for sm < s

∗
m ,

∂hopt

∂sm
> 0. Therefore the

region of effective subsidies is 0< sm < s
∗
m which exists when

s
∗
m > 0 or equivalently a > a

∗ as stated in Eq. 2.
This existence condition can be rearranged to R0ns >

1
2

(

1+
√
1+2Db2

)

, where R0ns represents R0 when there is no
subsidy. The biological parameters are now on the left (a , λ, σ)
and the economic parameters (b, D) are on the right. Biologi-
cally, for effective subsidies to exist R0ns must be high enough
such that it is not always economically optimal to eliminate the
pathogen.

A closed-form analytical solution is no longer possible when
κ 6=0, as seen in Fig. 2. Additionally, this condition is particu-
lar to the choice of functional form. Our numerical solutions
for κ 6=0 seem to support the existence of effective subsidies for
a > a

∗. However, clearly κ also determines the region of effec-
tive subsidies since even when a < a

∗ there may also exist a
region of effective subsidies when κ is high. When the proportion
colonized in the community is high and overwhelms new nosoco-
mial colonizations, there may be a point at which any subsidy
value is effective. Regardless of the intrinsic transmissibility, the
peak of hospital spending decreases as the proportion colonized
increases.

In general, a hospital may be “free riding” if a subsidy is not
effective since it lowers its own spending as more subsidy is
offered. Fig. 2, Top and Bottom shows that behavior may dif-
fer between a “free rider”—a hospital which does not increase
spending when others do—and a “cooperator”—a hospital that
increases spending when others do. In the language of game
theory and economics, for a free rider a subsidy is a strategic
substitute for the hospital’s own HIC resources and the institu-
tion is displaying policy resistance. For a cooperator a subsidy
is a strategic complement and the institution is displaying policy
reinforcement.

The strongest characteristic influencing into which category a
hospital falls is the intrinsic transmissibility. This attribute may
be associated with hospital size, ward size, or hospital type.
However, the proportion colonized in the community, κ, also
plays a role in determining hospital behavior. Hospitals with low
intrinsic transmissibility may act as cooperators if the proportion
admitted colonized is high.

Fig. 2. Illustration of how hospitals change their spending behavior in

response to a matching subsidy. Top shows a hospital with low intrinsic

transmissibility and Bottom shows a hospital with high transmissibility. We

consider an effective subsidy to correspond with points on these curves for

which the slope is positive. This occurs for a larger range of κ when intrinsic

transmissibility is high as opposed to when intrinsic transmissibility is low.

The parameters used to generate this plot are the same as in Fig. 1 other

than intrinsic transmissibility (a).

Multiinstitutional Games. The single-hospital case offers a stylized
model to understand how identical hospitals all receiving subsi-
dies may interact. We then explore a two-player game as a case
study in subsidy allocation.

Let X and Y be the proportions colonized in a focal hospital
and all other hospitals, respectively, such that the total num-
ber of hospitals is n . Z replaces the constant κ as a variable
describing the proportion colonized in the community. Patients
are still discharged into a common catchment population, but
are admitted to each institution at a rate r . The dynamics for
hospitals are the same as in the single-hospital case; however,
each has its own transmission function and choice of amount to
invest. Differences between hospitals could be defined in multiple
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Fig. 3. In a game-theoretic framework, hospitals are investing at a Nash

equilibrium that is determined by the offered subsidy (s) values. The black

lines show the response of the free rider (β(c) = 0.3
1+0.2

√

c
) to the amount

of money being invested by the cooperator (β(c) = 0.8
1+0.2

√

c
). Conversely,

the blue lines show the response of the cooperator to the amount of

money being invested by the free rider. The solid, dotted, and dashed lines

indicate various matching subsidy values. Any intersection of a black and

a blue line would represent Nash equilibrium spending at the specified

parameters. The asymmetry of these curves is a result only of the scaled

transmission rate function, which could also act as a proxy for hospital size

or other environmental differences. The background heat map indicates the

total number of patients infected after 30 y (white indicates high infec-

tion and green corresponds to low infection). The initial conditions used

are X = 0, Y = 0, Z = 10−5.

different ways, i.e., different sizes (different contributions to the
community) or different propensity to admit from a recently hos-
pitalized population (primary vs. tertiary care). Having noniden-
tical transmission functions provides an easy way to describe these
differences and is analogous to having different values of R0.

The system of differential equations describing the situation is

dX

dt
=β(c)X (1−X )−λX −σ(X −Z ) [6]

dY

dt
= β̃(c̃)Y (1−Y )−λY −σ(Y −Z ) [7]

dZ

dt
= r

(

X

n
+

Y (n − 1)

n
−Z

)

−λZ . [8]

The dynamics are now more complicated and thus we use a
cumulative cost function of the form below,

∫ τ

0

[

h +DX (t , h(1+ s), h̃(1+ s̃))
]

dt . [9]

To generate example response curves, we simulate this system
and generate numerically the outcome when hospitals (n =2)
are playing against each other in a two-player game. This is done

using nonlinear minimization of Eq. 9, given the strategy h̃ of all
other hospitals.

When two heterogeneous hospitals, i.e., one with low intrinsic
transmissibility and one with high intrinsic transmissibility, play
against each other, their responses to the other hospital’s actions
will be very different. Fig. 3 shows the response curves for three
different subsidy values laid over a heat map of the resulting

equilibrium of infection. Nash equilibria occur at the intersec-
tion of the response curves. By comparing the level of infection
at the Nash equilibria, we note that if a subsidy can be offered
to only one hospital, the optimal solution for reducing infection
is to offer it to the hospital with the lower transmission rate. We
assume that any combination of matching grant values can be
offered to this pair of hospitals.

When the hospitals have identical transmission functions,
the response curves are entirely symmetrical. When hospitals
have the same transmission rate, the best outcome is obtained
by offering the entire subsidy to a single hospital rather than
splitting it equally between the two.

The number of infected patients at Nash equilibria spending
for a range of subsidy values is shown in Fig. 4. The axes are the
total amount of money a public health authority would provide
to either hospital in the same heterogeneous case as in Fig. 3.
The asymmetry of the heat map shows that the lowest prevalence
appears to be obtained when more money is given to the hospi-
tal with lower transmissibility (predisposed to free riding). While
some benefit is gained no matter to whom the subsidy is given,
the worst outcome seems to occur when each one receives simi-
lar amounts of incentive. In the case of a limited budget, sloping
downward diagonal lines in Fig. 4 denote equal total amounts of
money spent by the public health authority (the sum of money
given to each hospital). The point at which infection is lowest is
along the axis corresponding to most of the budget being devoted
to the hospital with low intrinsic transmission.

Discussion

In this paper, we explored how public subsidies for HIC could
alter the behavior of hospitals and how best to deploy limited
subsidy resources.

We considered three types of subsidies: a subsidy for each
uninfected patient, a fixed subsidy, and a matching subsidy.
Assuming a fixed level of subsidy resources, the least effective at
reducing infection was a subsidy tied to the number of uninfected
patients at equilibrium, which is equivalent to a tax on infected
patients. A fixed subsidy was moderately effective; however, it
simply replaces a hospital’s own spending. The fixed subsidy
has no effect on the transmission of HAIs until the subsidy
contributes all of the HIC spending and the hospital invests zero.

Fig. 4. Given the same two hospitals and parameters as displayed in Fig. 3,

this plot shows the total incidence at Nash equilibrium spending. The units

of incidence are the sum of the proportion of X and Y infected (the maxi-

mum is 2). We iterated over a range of subsidy values from 0 to 10, found

the Nash equilibria, and then simulated the times series. The asymmetry of

the heat map indicates that most of the subsidies should optimally go to the

hospital with the lower transmission rate (free rider).
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The matching subsidy was the best at reducing infection for the
same cost to the policymaker. Furthermore, we derived a the-
oretical rule for when a matching subsidy will be effective. For
hospitals with high transmission and/or high levels of patients
being admitted already infected, a matching subsidy will result
in a hospital increasing its own spending.

In our study, we observed two kinds of behaviors on the part of
hospitals: Free riders spend less when offered funding and coop-
erators spend more when offered funding. An intuitive approach
to deploying scarce subsidy resources might be to offer encour-
agement to a hospital that increases spending when others do.
However, the results of our mathematical model suggest that in
a two-hospital system incentivizing the institution with a lower
transmission rate is better for the overall outcome of the system.
Since this two-player game acts as a case study in subsidy allo-
cation, future work should explore the nuances of more complex
network combinations of n hospitals with various transmission
functions. Furthermore, an optimal control model may be able
to tease apart the feedbacks between local and global infection
control efforts as well as the differences between optimal and
suboptimal spending conditions.

Previous work has explored similar epidemiological optimal
allocation problems in metapopulations with varying conclusions
(20, 21). In a two-patch susceptible-infected-susceptible system
with an annual budget for treatment it may be optimal under cer-
tain conditions to devote the entire budget to the least-infected
group (22–24). A similar theoretical question is addressed by
Klepac, Laxminarayan, and Grenfell (25) with respect to vaccine
allocation between two patches. In their model a limited bud-
get should initially be allocated to the patch closest to the herd
immunity threshold.

In the context of this paper, the group that has the lower trans-
mission rate should receive the incentive. This group is closest to
eradicating the infection and significantly reduces the proportion
of patients infected in the community. In effect, this is focusing
on reducing the local infection in a single patch to reduce the
total global prevalence. Individuals colonized in the community
play a large role in the transmission dynamics and so reducing the
community prevalence is most effective at reducing the global
prevalence. If the money from a subsidy was split, then there
would not be as strong an impact on patients admitted already
colonized. Thus, the marginal return on an additional subsidy
dollar is much higher for a lower transmission rate.

We have made two strong assumptions to support analytic
tractability. First, hospitals are identical in all ways other than
their transmission rate as a function of investment. Moreover,
within a hospital we assume the patient population is well mixed.
The differences in transmission rate between institutions may be
a reflection of hospital size or function (such as tertiary care facil-
ities); however, they cannot reflect nonrandom admittance from
the catchment population. If patients are more likely to be admit-
ted to one hospital over another, that hospital may contribute
disproportionately to colonization. Implementing any of these
heterogeneities is important for future work. We predict that such
an extension will not qualitatively change our results and that the
subsidy would still be allocated to a single institution. Our second
major assumption is that hospitals must choose a level of invest-
ment which cannot be changed once implemented. Future work
could extend this model to an optimal control problem that may
determine the most effective investment as a function of time.

Unfortunately, we lacked data to confirm how hospital spend-
ing decisions are made. Such data could reveal whether there
are changes in hospital budgeting when comparing those with
different financial incentives or community structure. Our model
predicts that rational actors would respond optimally when pre-
sented with incentives; however, there may be other factors at
play in decision making.

Our results are applicable not only to individual hospitals.
Large multifacility systems managed by healthcare corporations
could also benefit from considering the behavior change result-
ing from infection control incentives. Additionally, this type of
framework could be applied to consider vaccination or treatment
in a metapopulation.

Within the overlap of epidemiology and economics, this
research provides another example of the way in which incentives
can alter behavior (sometimes in unexpected ways) and fun-
damentally change the outcome of an epidemic. More broadly
we offer a model that can guide policymakers in enacting sub-
sidy programs which result in encouraging investment in hospital
infection control.
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