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The Roll Back Malaria (RBM) partnership has established
goals for protecting vulnerable populations with locally
appropriate vector control. In many places, these goals
will be achieved by the mass distribution of insecticide
treatedbednets (ITNs).Mathematicalmodels can forecast
an ITN-driven realignment ofmalaria endemicity, defined
by the Plasmodium falciparum parasite rate (PfPR) in

children, to predict PfPR endpoints and appropriate pro-
gram timelines for this change in Africa. The relative ease
ofmeasuringPfPRand itswidespreadusemake itparticu-
larly suitable for monitoring and evaluation. This theory
provides a method for context-dependent evaluation of

ITNprogramsandabasis for setting rational ITNcoverage

targets over the next decade.

Strategic plans and likely timelines for malaria control

The Abuja Declaration and Plan of Action (2000) set tar-

gets of protecting 60% of pregnant women and children

under five years’ old with insecticide-treated bednets

(ITNs) by 2005 [1]. The Roll Back Malaria (RBM) strategic

plan (2005) subsequently redefined these targets to 80%

coverage by 2010 [2] and the recent Global Malaria Action

Plan (2008) called for a rapid scale-up to achieve universal

coverage with some form of vector control [3]. There has

been fast, large-scale ITN deployment in some areas of

Africa, but ITN use in many parts of the continent remains

low [4]. In areas where high ITN coverage has been

achieved, there are early reports that the epidemiology

of malaria in these areas is in transition [5–12], but the

theoretical basis for attributing these changes to ITNs

remains poorly defined. Scaling-up ITN coverage across

Africa remains a high priority, but there is also a need to

learn from the rapid scale-up of ITN coverage and put that

information to work as countries define strategic plans and

set funding priorities for the next five years and beyond.

This planning process would benefit from a quantitative

and predictive approach that is based on direct measures of

malaria and ITN usage, not just estimates of commodity

distribution. Using mathematical models, it is possible to

define rational expectations about ITN-driven changes in

malaria in relation to actual ITN usage, the ITN coverage

levels required to achieve national goals for malaria

reduction, and the likely timelines for change.

Finding a metric

A predictive theory for ITNs is ideally based on quantities

that are commonly and easily measured. One effect of

ITNs is to reduce the personal risk of clinical malaria,

severe malaria, and malaria mortality for the individuals

who use them [13,14]. Changes in disease burden are the

outcomes of greatest interest, but they are also the most

difficult to measure. Population-level benefits occur

because ITNs also slow transmission by increasing mos-

quito death rates, delaying feeding, or diverting some bites

onto non-human hosts [13,14]. High levels of ITN owner-

ship and usage by all members of a community can there-

fore substantially reduce the vectorial capacity, reduce the

size of the parasite reservoir [15,16], and protect people

who do not own a net [17–19].

Several metrics have been developed over the past

century to measure these population-level parasitological,

entomological, and epidemiological aspects of malaria

transmission [20]. Three potentially useful metrics are

the Plasmodium falciparum parasite rate (PfPR or

malaria prevalence, the proportion of the population

positive for malaria infection, which is usually measured

by microscopy), entomological inoculation rate (PfEIR, the

expected number of infectious bites per unit of time) and

basic reproductive number (PfR0, the expected number of

malaria cases that would arise from a single case after one

parasite generation if there were no malaria immunity or

malaria control). The PfR0 would be an ideal metric to use

for planning [21], but fewer than 50 direct estimates have

been made [22–24]. The annual PfEIR provides a direct

measure of exposure to malaria, and been measured

hundreds of times [25], but not sufficiently extensively

nor in a standardized way that would provide a sound

basis for planning. The PfPR is frequently measured, and

more than 17,000 geo-referenced estimates of PfPR made

since 1985 have been age-standardized and assembled into

a database by the Malaria Atlas Project (MAP) [26–29].
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We have, therefore, developed a theory and forecast

ITN-driven changes in endemicity, defined by the PfPR

in children aged 2–10 years (Box 1). The PfPR provides a

direct estimate of the reservoir of asexual parasites, so

reductions in PfPR provide a direct estimate of the pro-

gress towards control and elimination of disease [20,30].

The relative ease of measuring PfPR in children aged 2–10

years and its widespread measurement [29] make it

particularly suitable for strategic planning, monitoring

and evaluation (Box 1).

Malaria transmission models and control

Malaria transmission models provide a basis for develop-

ing and refining a predictive theory based around the

PfPR. Starting with Ronald Ross [31,32], malaria trans-

mission models established a quantitative basis for eval-

uating the complex quantitative relationships between

PfPR, PfEIR and PfR0. These earlier theoretical models

have now been extended to include simple models of

malaria immunity [33], superinfection [34], heterogeneous

biting [35], various modes of malaria control [36,37], and

complex individual-based computer simulations [38,39].

Basic epidemiological theory for malaria suggests that

PfR0 defines a steady state for PfPR [40], so a malaria

transmissionmodel andPfPR can be used to estimatePfR0

[24,41] (Figure 1a and Supplementary Online Infor-

mation). Given the age-related patterns in PfPR, it is

necessary to use an age-standardized PfPR to estimate

the PfR0; children aged 2–10 have poorly developed anti-

parasite immunity but ample exposure to malaria, soPfPR

in these age groups best reflects the steady state [27].

To establish quantitative benchmarks for planning, a

publishedmalaria transmissionmodel thatdescribes super-

infection,heterogeneousbiting, and immunitywasused; the

model fits the empirically observed relationships between

PfEIR and PfPR in African children better than a well-

established statistical relationship [42,43], and the fitted

parameters are consistent with direct observations [24,41].

The relationship betweenPfPR,PfEIR andPfR0 is strongly

affected by the degree of heterogeneous biting, which can

disguise subpopulations with intense exposure. Contrast

two populations with a PfPR of 10%: in a population in

which 10% of people are bitten many times each day, but in

Box 1. Malaria Indicators for monitoring and evaluation

Most malaria morbidity and mortality occurs in children under five

years of age. Since the inception of Roll Back Malaria (RBM),

national Malaria Indicator Surveys managed as Demographic and

Health Surveys (DHS) or Multiple Indicator Surveys (MICS) have

focused on coverage indicators among pregnant women or children

under five years old. However, theory suggests that the best way to

protect the most vulnerable people and to achieve stable endemic

control will be to shift the emphasis from the most vulnerable and

extend insecticide-treated bednets (ITN) coverage to the whole

population [19]. Thus, monitoring ITN ownership and use must

include all age groups in a community.

More recently, there has been a trend toward including infection

prevalence in young children as part of national sample surveys, but

the PfPR in children under five years of age is difficult to interpret as

a measure of transmission [27]. The standard PfPR measured in

children older than two years of age but younger than ten years of

age has many advantages, including continuity with historical

measures of malaria infection risk [20,52]. The correspondence with

the steady state PfPR makes it useful for applying epidemiological

theory [27]. The PfPR in 2–10-year-olds thus provides a reasonable

index for planning, monitoring and evaluating progress. PfPR

changes sufficiently rapidly that it provides a measure of recent

exposure, but sufficiently slowly that it provides a good average

measure of exposure within the past 1–2 years. In general,

reductions in PfPR provide a good descriptor of PfPR in the whole

population and the parasite reservoir for ongoing transmission.

National sample surveys should be encouraged to ensure a more

efficient age sampling for parasite prevalence to track the impact of

scaled intervention coverage.

Figure 1. Predictive theory requires a transmission model integrated with a control model. (a) The malaria transmission model predicts a particular relationship between

baseline PfPR and PfR0. The solid black line shows a population where 20% of the population gets 80% of the bites (a = 4.2); the dashed line shows the same degree of

heterogeneous biting but with some immunity that blocks transmission to mosquitoes. The lower gray line shows the relationship in places where biting is more

homogeneous biting (a = 2), implying lower PfR0 for the same PfPR) and the upper gray line shows the relationship in places where it is more heterogeneous (a = 6),

implying higher PfR0 for the same PfPR). For example, the blue line suggests that PfR0 is �85, starting from a baseline PfPR of 60%. (b) The control model describes the

proportional reduction in transmission as a function of effective coverage. The solid lines represent the bionomics of four vectors [14,45]. The dashed black line is the

geometric mean for the two An. gambiae species from different places. The dark solid line is An. arabiensis, which was used as the benchmark. The purple segment shows

the ITN effect size for 60% effective coverage, such as would occur with 80% ownership and 75% usage. To compute a new endpoint PfPR, this reduction is used in part (a)

to compute a new reproductive number under control, PfRC(f), and the new PfPR endpoint, X̄ fð Þ [see the purple segment and the red lines, in part (a)]. The same algorithm

can be used to predict the change in PfPR starting from one level of effective ITN coverage and switching to another.
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which 90% of the population is never bitten, PfR0 would be

much higher than in a population with a PfPR of 10% with

uniform biting rates. The relationship between PfPR and

PfR0 from this model is shown graphically in Figure 1a.

A second model is required to model the effects of ITNs.

A suitable model is based on the mosquito feeding cycle

that describes changes in the vectorial capacity, the vector-

related aspects of the reproductive number [44]. The effect

of ITNs depends on the proportion of the whole community

that owns and uses a net and the proportion of biting that

occurs indoors at night, called the effective coverage (f)

[14]. Increased use of ITNs lowers the vectorial capacity,

and reduces the reproductive number to a new level,

PfRC(f). The ITN effect size on transmission, defined by

the ratio PfR0:PfRC(f), depends on effective coverage and

vector bionomics. The predicted relationship between ITN

effective coverage and the effect size for different vectors is

illustrated graphically in Figure 1b.

Both models are necessary because of the non-linear

functional relationships between PfPR and PfR0, and be-

tween ITN effective coverage and the transmission effect

size. To compute a new steady state, the malaria trans-

mission model uses the output of the ITNmodel. The same

function that describes PfR0 in terms of PfPR is inverted to

predict a new steady state for PfPR in terms of PfRC(f)

(Figure 1a).

Benchmark predictions from these two models are

based on the best-fit parameters from the malaria trans-

mission model [41] and vector bionomics for a typical

African vector (Figure 1b, Supplementary Online Infor-

mation) [14,45]. The models predict the changes in PfPR

endpoints from any baseline and for any level of ITN

effective coverage; the corresponding endemicity class of

the endpoint is shown graphically in Figure 2a. Themodels

suggest that the outcome of scaling up ITNs will vary,

depending on baseline PfPR, the ITN effect size, and the

Figure 2. (a) For the benchmark parameters, the endemicity class of the PfPR endpoint for every baseline PfPR and every effective ITN coverage level (f). The colors

represent different endemicity levels (dark red, >40%; red, 5%–40%; pink, 1%–5%; and gray, <1%). The dashed black lines highlight two points, the level of effective

coverage required to reduce PfPR to below 1% starting from a baseline of 40% and a practical maximum starting point for which low stable endemic control is achievable

with only ITNs, at 95% effective coverage. (b) The uncertainty associated with the benchmark prediction is represented here as the probability of reducing PfPR to below 1%,

given the uncertainty about biting heterogeneity and vector bionomics (Supplementary Online Information). (c) The changes in PfPR do not happen instantaneously, even

in the best case in which ITN coverage is rapidly scaled-up to the maximum and illustrated here. The colors show the waiting time until PfPR is within 1% of the endpoint in

Figure 2a (>8 years, dark-blue; 4–8 years, blue; 2–4 years, sky-blue; 1–2 years, purple; <1 year pink). When RC(f) � 1 so that the endpoint is approximately 1% (black region),

the waiting times can be more than one decade [49]. (d) The timelines for changing PfPR endemicity are sensitive to the rate that ITNs are scaled-up. These illustrate the

changes over time starting from a baseline of approximately 50%, when the ITN coverage scales up to a maximum instantaneously (black), or linearly over a period of 2

years (blue), or 5 years (red). The relationship between ITN coverage and the effect size is greater than log–linear (see Figure 1b), so the maximum effect size is not achieved

until ITN coverage levels are very close to the maximum value.
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degree of heterogeneous biting (Figure 1a, and Supple-

mentary Online Information). The ITN effect size varies

with vector bionomics, the fraction of mosquitoes killed or

repelled by the nets, and other factors [14]. The predictions

are, thus, accompanied by an assessment of uncertainty

(Figure 2b, and Supplementary Online Information).

Setting targets

To be effective and transparent, country-level plans must

set verifiable targets that are described as quantitative

changes in malariometric indices. The theory developed

here can provide guidance in setting these goals based on

a commonly used metric. To illustrate how this can be

done, two realistic benchmarks were set that have some

utility for national malaria control programs when apply-

ing for international donor support: (i) what ITN coverage

levels would be required to halve existing PfPR? and (ii)

what ITN coverage levels would be required to reach a

national or sub-national goal of 1% PfPR? At a 1% PfPR,

disease burdens across Africa would be substantially

reduced [46–48].

If PfPR is 70%, scaling-up ITNs to an effective coverage

of 70% will ultimately halve this starting endemic level

(Table 1). As a rule of thumb for halving PfPR, the increase

in effective coveragemust be at least 80% of baselinePfPR.

What can be achieved with 80% ITN ownership used 75%

of the time (i.e. 60% effective coverage), consistent with

short-duration, but large-scale ITN trials [15,16]? At these

levels, a reduction in transmission of 93% would reduce

PfPR to below 1% if the baseline PfPR was below �40%.

ITNs do not provide perfect protection, so full coverage

may not be sufficient to achieve sustained endemic control

areas with very high baseline PfPR. If the baseline PfPR

exceeds 70%, the models predict that 94% effective cover-

age is required to reach PfPR of 1%. This would represent

an upper limit in a context where 6% of biting by vectors

occurred outdoors.

PfPR does not change instantaneously. Timelines for

changing malaria endemicity as ITN coverage is gradually

scaled-up can be found by simulatingmalaria transmission

in the corresponding models [49,50] (Supplementary

Online Information). After reaching ITN coverage targets,

the time to reach the new PfPR endpoint can be as short as

a few months. If the endpoint is stable endemic control, if

PfRC (f) is close to one, the waiting times can be more than

a decade (Figure 2c)[49].

An important lesson was that timelines for ITN impact

on PfPR are extremely sensitive to the time taken to reach

a scaled coverage target (Figure 2d). The predicted func-

tional relationship between ITN effective coverage and

proportional reductions in vectorial capacity is, in the

model, greater than log–linear (see Figure 1b). The great-

est reductions in vectorial capacity are realized when ITN

coverage levels reach the target, usually near the end of the

scaling-up period. National sample surveys should there-

fore compare PfPR endpoints in a standard fashion and

cross-sectional surveys be repeated for 3–5 years after ITN

coverage reaches its target maximum.

Most African governments set strategies for malaria

control, policy and financing on five-year cycles. The bench-

mark predictions in Figure 2c represent a best-case

scenario in which ITN coverage is rapidly brought to scale,

but a more realistic scenario would be that ITN coverage

levels would be scaled-up over the five-year planning cycle.

At the end of a scaling-up period, PfPR would therefore

remain higher than the benchmark (Supplementary

Online Information).

Caveats

The benchmarks illustrate how mathematical models can

provide guidance about the likely outcome of scaling-up

ITNs, but the predictions come with caveats. A monitor-

ing and evaluation framework for assessing the perform-

ance of control programs based on parasitological

markers will depend on the local entomological context

for transmission, including vector bionomics, mode of

action of the insecticides in the nets [14], observed levels

of ITN ownership and use [4], the degree of hetero-

geneous biting, seasonal fluctuations in mosquito popu-

lations, changing weather, changes in malaria control,

and changing socioeconomic status of countries. In

particular, these predictions must be revised if national

drug policies abandon failing drugs and adopt artemisi-

nin combination therapies while simultaneously scaling-

up ITNs: increased use of effective drugs also reduces

transmission [37]. Analysis of steady states may not be

useful in places with high inter-annual variability in

transmission. Mathematical models can be adapted to

reflect differences in the local ecology, provided that

there is some additional information about the inputs.

In practice, information about temporal trends and

spatial variability in malaria transmission is usually

not available. This analysis represents a starting point

for planning that can be improved upon as more infor-

mation about transmission in a specific context becomes

available.

Taken together, baseline endemicity and uncertainty

about heterogeneous biting, immunity, and vector bio-

nomics suggest highly unpredictable endpoints after

reaching universal coverage, as prescribed by RBM.

Table 1. Benchmark targets for ITN effective coverage, defined

as ownership multiplied by the rate of usea

To halve PfPR To reach 1% PfPR

PfPR f0 = 0% f0 = 10% f0 = 20% f0 = 0% f0 = 10% f0 = 20%

5% 4% 14% 24% 7% 17% 27%

10% 8% 18% 28% 15% 25% 34%

15% 12% 22% 31% 23% 32% 41%

20% 16% 26% 35% 30% 39% 48%

25% 20% 29% 38% 37% 46% 54%

30% 24% 33% 42% 45% 52% 60%

35% 28% 37% 46% 51% 59% 65%

40% 33% 42% 50% 58% 65% 72%

45% 38% 46% 54% 65% 71% 76%

50% 42% 51% 59% 71% 77% 81%

55% 49% 56% 64% 77% 82% 86%

60% 55% 62% 69% 83% 87% 92%

65% 62% 69% 74% 89% 92% 96%

70% 70% 75% 80% 94% 98% *

75% 78% 83% 87% 99% * *

80% 86% 90% 93% * * *
aThe first three columns give the ITN effective coverage target required to reduce

PfPR by 50% from the baseline. The next three columns report the ITN coverage

required to reduce PfPR to 1%. Each column represents a different ITN coverage at

the baseline (f0). The asterisk indicates PfPR values for which a 1% PfPR is not

attainable with ITNs alone.
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Monitoring and evaluation across the transmission spec-

trum and across the range of dominant vector species

should aim to establish context-specific expectations and

goals.

Conclusion

Mathematical models establish basic expectations about

the changes in PfPR as a function of ITN coverage. These

can be used to establish rationally defined endpoints,

timelines and criteria for monitoring and evaluation of

ITN programs. A limitation for planning has been poor

information about the global distribution of malaria risk,

but a global map and an open-access database describing

PfPR have now been published, and these provide a basis

for regional planning [29]. In practice, information about

historical trends in other factors and spatial variability in

malaria transmission is usually not available at scale. The

models suggest that it is possible to transform malaria

epidemiology across Africa in the short-to-medium-term by

achieving high levels of ITN ownership use among all

members of the population living across the diverse ende-

micity spectrum [29]. The timelines for a transition to low,

stable endemic control is achievable over the next 5–10

years for much of the continent. More importantly, this

impact can be predicted and measured. Ongoing surveil-

lance, including parasitological monitoring, is imperative

to evaluate the theory in the local context and update

programmatic goals. Following adaptations to existing

national sample survey methodologies promoted by

RBM (Box 1), the international community can map pro-

gress and its contribution to the changing landscape of

malaria in Africa [51].
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30 Macdonald, G. and Göeckel, G.W. (1964) Themalaria parasite rate and

interruption of transmission. Bull. WHO 31, 365–377

31 Ross, R. (1908) Report on the Prevention of Malaria in Mauritius,

Waterlow and Sons Limited

32 Ross, R. (1911) The Prevention of Malaria, John Murray

33 Dietz, K. et al. (1974) A malaria model tested in the African savannah.

Bull. WHO 50, 347–357

34 Dietz, K. (1988) Mathematical models for transmission and control

of malaria. In Principles and Practice of Malaria (Wernsdorfer, W. and

McGregor, I., eds), pp. 1091–1133, Churchill Livingstone

Opinion Trends in Parasitology Vol.25 No.11

515

http://www.map.ox.ac.uk/
http://dx.doi.org/10.1016/j.pt.2009.08.002
http://dx.doi.org/10.1016/j.pt.2009.08.002


35 Dye, C. and Hasibeder, G. (1986) Population dynamics of mosquito-

borne disease: effects of flies which bite some people more frequently

than others. Trans. R. Soc. Trop. Med. Hyg. 80, 69–77

36 Koella, J.C. (1991) On the use of mathematical models of malaria

transmission. Acta Trop. 49, 1–25

37 Okell, L.C. et al. (2008) Modelling the impact of artemisinin

combination therapy and long-acting treatments on malaria

transmission intensity. PLoS Med. 5, e226

38 McKenzie, F.E. and Bossert, W.H. (2005) An integrated model of

Plasmodium falciparum dynamics. J. Theor. Biol. 232, 411–426

39 Smith, T. et al. (2006) Mathematical modeling of the impact of malaria

vaccines on the clinical epidemiology andnatural history ofPlasmodium

falciparum malaria: overview. Am. J. Trop. Med. Hyg. 75, 1–10

40 Moskovsku, S.D. (1967) A further contribution to the theory of malaria

eradication. Bull. WHO 36, 992–996

41 Smith, D.L. et al. (2005) The entomological inoculation rate and

Plasmodium falciparum infection in African children. Nature 438,

492–495

42 Beier, J.C. et al. (1999) Short report: entomologic inoculation rates and

Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop.

Med. Hyg. 61, 109–113

43 Hay, S.I. et al. (2005) Urbanization, malaria transmission and disease

burden in Africa. Nat. Rev. Microbiol. 3, 81–90

44 Garrett-Jones, C. (1964) Prognosis for interruption of malaria

transmission through assessment of the mosquito’s vectorial

capacity. Nature 204, 1173–1175

45 Killeen, G.F. et al. (2000) A simplified model for predicting malaria

entomologic inoculation rates based on entomologic and parasitologic

parameters relevant to control. Am. J. Trop. Med. Hyg. 62, 535–

544

46 Rowe, A.K. et al. (2006) The burden ofmalariamortality among African

children in the year 2000. Int. J. Epidemiol. 35, 691–704

47 Snow, R.W. et al. (1997) Relation between severe malaria morbidity in

children and level of Plasmodium falciparum transmission in Africa.

Lancet 349, 1650–1654

48 Snow, R.W. and Marsh, K. (2002) The consequences of reducing

transmission of Plasmodium falciparum in Africa. Adv. Parasitol.

52, 235–264

49 Smith, D.L. and Hay, S.I. (2009) Endemicity response timelines for

Plasmodium falciparum elimination. Malar. J. 8, 87

50 Bailey, N.T.J. (1982) The Biomathematics of Malaria, Oxford

University Press

51 Greenwood, B. et al. (2008) Malaria: progress, perils, and prospects for

eradication. J. Clin. Invest. 118, 1266–1276

52 Metselaar, D. and van Thiel, P.H. (1959) Classification of malaria.

Trop. Geogr. Med. 11, 157–161

Opinion Trends in Parasitology Vol.25 No.11

516


	Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa
	Strategic plans and likely timelines for malaria control
	Finding a metric
	Malaria transmission models and control
	Setting targets
	Caveats
	Conclusion
	Acknowledgements
	Supplementary data
	References


