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Abstract 

Flexible and extensible complex mathematical models provide an in silico laboratory 

for testing ideas about the factors that scale from individuals to populations and 

affect policy. Here we present a model of transmission and resistance applicable to 

Streptococcus pneumoniae and other clinically important bacteria that commonly 

colonize hosts and only occasionally cause disease. For these opportunistic 

pathogens, the colonizing bacteria (but usually not the bacteria in an infection) 

constitute the reservoir of contagion. Even as medicine focuses on managing 

invasive disease, public health and policy must also consider the reservoir dynamics 

that drive vaccine-induced strain replacement and the evolution of resistance to 

antibiotics. Our new Markov-chain model shows the reservoir and transmission 

dynamics of colonizing bacteria simultaneously considers several biological 

phenomena, including differences in the transmissibility, invasiveness, 

immunogenicity, and persistence of strains; strain-specific, cross-, or strain-

transcending immunity; simultaneous colonization with multiple strains with no 

strain interaction, and with direct inhibition and competitive dominance; bacterial 

population responses to drug treatment and the evolution of drug resistance; and 

changes in immunity that are related to the host’s age. These factors have been 

identified as potentially important for bacterial reservoir dynamics and thus for 

policy. The effects of these biological factors on policy can be evaluated within our 

flexible framework.  



Introduction 

Streptococcus pneumoniae is a leading cause of morbidity and mortality of under-5 

year-olds, causing an estimated 700,000 to 1 million child deaths each year [1]. 

Before the introduction of the pneumococcal conjugate vaccine, invasive disease 

was managed primarily by antibiotic therapy, with little attention to or 

understanding of the reservoir dynamics of the disease. With the vaccine and the 

additional possibility of preventing disease and even reducing transmission, 

significant changes in the ecology of S. pneumoniae were observed [2,3]. The lack of 

clarity on the short- and long-term implications of these changes on the dynamics of 

disease transmission and drug resistance is a significant barrier to developing tools 

to reduce the burden of disease. 

Understanding the epidemiology of S. pneumoniae poses a challenge for three 

reasons: first, despite being a major cause of diseases such as pneumonia, 

meningitis, and sepsis, pneumococci commonly colonize hosts without causing 

infection, creating a reservoir of infection; second, the numerous strains and 

serotypes have different colonization and infection rates as well as different levels 

of resistance to drugs; and third, the dynamic effects of immunity are not well 

understood. This paper presents a mathematical model that captures the dynamic 

links between the reservoir of pneumococci, pneumococcal transmission, and drug 

resistance. Although we concentrate on pneumococci, similar models can be applied 

to other species of bacteria with similar ecology (e.g., Haemophilus influenzae type B 

and Staphylococcus aureus).  

Mathematical models can help explain the largely unobserved role of asymptomatic 

carriage. The function of a model is not to describe the precise disease dynamics. 

Rather, where the dynamics are indiscernible and controlled experiments are 

impractical or impossible, models can be used to depict scenarios representing 

reality, conduct virtual experiments illuminating disease epidemiology, identify 

relevant biological detail, and analyze the merits of different interventions. Prior 



models describing pneumococcal transmission dynamics have primarily assumed 

that individuals can be classified in a single, simple epidemiological state, colonized 

or infected by either a single strain or a pool of the entire pneumococcus population 

[4–7]. This type of model, though useful for describing some aspects of the 

epidemiology, lacks detail on the role of bacterial competition and is not appropriate 

for describing the changing ecology occurring in the reservoir of infection [2,3].  

More complicated pneumococcal models have taken account of some elements of 

the complex ecological and evolutionary processes by splitting the world into two 

strains and pooling either resistant strains and susceptible ones [8–10] or vaccine 

serotypes and non-vaccine types [11–16]. Although these models have been used to 

describe strain evolution, they overlook the role of bacterial competition, which may 

compromise analysis and confound assessments and comparisons of policies. For 

instance, because vaccination reduces resistance in a population in some cases 

[17,18] and induces the emergence of highly resistant serotypes in others [19], 

ignoring the role of competition among bacterial strains makes it difficult to 

evaluate the effect of vaccination interventions on resistance. Other models take 

into account competition between strains, but do not account for the immune 

response and its effects on the bacteria population. 

Part of the challenge in advancing our understanding stems from the substantial 

data gaps for pneumococci and other pathogens. One way to address these issues is 

to construct a model with a high degree of complexity that can simultaneously 

consider all the sources of uncertainty and then systematically explore the effects of 

each factor on policy.  

This paper describes a flexible framework that is parsimonious but also sufficiently 

complex in its detail of S. pneumoniae strains—including any combination of 

serotypes and drug-resistant phenotypes, direct and indirect competitive 

interactions with each other, and interactions with the immune system—while 

maintaining consistent mathematical theory. One recently published model 



incorporates many of these elements [20], but to our best knowledge, this is the first 

model of pneumococci that considers competition at the serotype level, competition 

among strains of the same serotype (e.g., resistant and susceptible strains), and host 

immunological factors. In the following sections we describe the model, a 

parsimonious parameterization of it, and its extensibility. 

The Model 

Reservoir Dynamics for a Single Strain 

Asymptomatic carriers serve as the ecological reservoir for disease, though 

colonization rates vary by age, geography, and socioeconomic conditions [21,22]. 

Colonization generally precedes infection [23,24] but many individuals remain 

symptom free, making carriage rate largely an ecological or public health problem 

rather than a medical problem. Data describing carriage are thus not routinely 

collected, and research on colonization has been limited to a few longitudinal 

studies [24–36] and cross-sectional ones [37–41]. Consequently, reservoir dynamics 

and changes over time due to serotype evolution and adaptation to selection are 

poorly understood.  

Reservoir dynamics were described by a generalized Markov-chain model, 

developed initially for a single strain (Figure 1). Let  be the 

state set, where x
0

 denotes the fraction of the population that is not colonized and 

xi  ( ) describes a categorical level of colonization: it could describe the portion 

of the population colonized with density level i  or the portion with i  colonization 

sites in the nasopharynx. i = L  is the largest colonization level, which describes the 

maximum density colonizing bacteria could possibly attain, summed over all strains 

and serotypes. Let the natural death rate of human hosts, u , be exactly balanced by 

births, such that the population described by X  is maintained at a constant size. 



Let bi  and di  be the rates of transitions (growth and decay) between any two 

consecutive colonization levels (i.e., from i  to  or  defined for all counting 

numbers). Because of the lack of data describing colonization and changes in 

bacterial populations within a host, biand di  in this model are functions that 

regulate the duration of colonization and indirectly influence other processes, and 

they determine the proportion of the population in each state. (In practice, L is 

chosen after bi and di at a value so high it is rarely attained.) In this simple 

framework they are assumed to be linear functions of the current state of 

colonization (  and ). As the model is expanded, these functions will 

reflect both strain-specific competitive dominance and host factors. The dynamics of 

this system can be described by a potentially infinite set of coupled ordinary 

differential equations (S1.1). 

In this framework, we assume that colonization is the main driver of transmission 

and that infection follows a fairly predictable time course. We model this by 

incorporating invasiveness ( ) (or the rate that colonization becomes infection) 

and infection clearance ( ) rates, and coupling infection states, 

, parallel to carriage states ( X ). The state yi  indicates 

infection with a background colonization level i . The force of infection is a factor of 

the colonization pressure, its dynamics, and the strain invasiveness and clearance 

parameters. 

Let  be the colonization pressure experienced by susceptible 

hosts, where  is the strain transmission rate and  is infectiousness as a 

linear function of colonization levels. In this setup bacterial densities arise through 

colonization from  at the rate . Depending on the interpretation of the 

states, colonization pressure can also add to bi  leading to an increase in overall 

growth rates at higher levels. There is no fixed a priori assumption made about the 

gap between any two consecutive levels i  and .  



From a policy evaluation perspective, perverse effects may be overlooked if shifts in 

the patterns of diversity, or the speed at which they occur, are ignored. Direct 

observations and age-specific patterns of pneumococcal disease and carriage 

suggest that immunity has an important influence on the reservoir and transmission 

dynamics of pneumococci [38,42–48]. Though there is no conclusive theory on the 

effect of host immunity, it is believed to be the primary mechanism driving the 

relationship between age, colonization prevalence, and disease incidence [45].  

We assume that host immunity can protect from colonization and infection, as well 

as reduce the severity of disease and the length of colonization. To model immunity, 

we add another dimension to X  (and equivalently to Y ) for each strain. The state 

xi,k  describes both the colonization level ( i) and the host immunity level ( k ). We 

can model immunity to act through each of the aforementioned avenues, or through 

combinations of them. For simplicity, immunity was assumed to directly affect only 

the acquisition of bacteria in the process of transmission and the decay rate of a 

bacterial strain (di,k ); the latter indirectly reduces colonization duration and disease 

incidence. Alternative parameterizations are also possible in which immunity 

directly reduces the risk of infection.  The colonization pressure is 

, where f k (b) is a function that reduces the likelihood of 

acquiring a new bacterial colonization as immunity increases, such that 
df k
dk

< 0 . The 

decay function, regulating colonization duration, is , where h  is the 

strain-specific effect of immunity on duration. Immunity waning ( ) and waxing (

) is described by a Markov-chain process, similar to bacterial growth and decay 

(S1.1).  

Multiple Strains 

The population structure of S. pneumoniae is characterized by differences in a 

polysaccharide capsule that protects the bacterium from phagocytosis. More than 



90 capsular serotypes have been identified [49] and serve as an important 

distinguisher of invasive potential and disease outcome [50]. Evolution of S. 

pneumoniae is marked by high rates of horizontal gene transfers [51–53], which 

contribute to a complicated strain structure [53]. However, although serotype 

distribution and strain structure vary geographically [22], constancy in the 

frequency distributions of particular serotypes or serogroups (groups of closely 

related serotypes) in some locations has been observed over decades ([54] and 

references therein), suggesting that these frequencies are maintained by strong 

selective force [54].  

The importance of selective forces is supported by the recent introduction of a 

pneumococcal vaccine that provided protection against the seven most prevalent 

serotypes. After the introduction of the vaccine, reductions in invasive 

pneumococcal disease (IPD) were observed, as were reductions in colonization 

rates with vaccine serotypes [17,54–56], but carriage of vaccine serotypes was 

replaced to varying extents by carriage of nonvaccine types [2,57–61]. These results, 

along with laboratory studies, suggest that competitive hierarchies among serotypes 

exist [62]. Thus, introduction of the vaccine in a geographical setting with different 

serotype distributions could induce replacement with more virulent serotypes. 

One disadvantage of the reservoir dynamics Markov-chain model presented is that 

almost all of the complexity must be addressed in considering the interactions 

between a pair of strains. These interactions include two strains that are 

functionally identical with truly neutrally stable dynamics [63], strains that are 

functionally independent; direct inhibition of one strain by another (e.g., through 

the production of allelopathic chemicals), competition for scarce resources (e.g., 

space), and a range of cross-immunity generated by the immune system.  

The advantage of the this Markov-chain model is that strain complexity can be easily 

added to the model, including any combination of serotypes and drug resistance 

phenotypes. To expand the model to incorporate N  strains the state space, both X



and Y , is expanded to Ndimensions (disregarding immunity). Let each strain in 

 be associated with the set of carriage quantities  

. In the state xq   the bacteria levels are . In the two-

strain, four-level model in Figure 2, the state x
2,0

 is interpreted as carriage of strains 

1 at level 2 and no carriage of strain 2. 

The most difficult problem is to find a mathematical formulation that describes 

neutral dynamics and that also satisfies strong conditions with respect to the 

neutrality of functionally equivalent strains. To satisfy this condition, a cap 

 implicitly builds competition for resources between functionally 

equivalent strains into the model. The limit produces an N-dimensional triangular 

half-matrix. Similar to the one-strain model, the function  and  

determine the rates of growth and decay, regulating the duration of colonization, for 

strain s . Simple functional forms for the growth and decay functions may be 

 and , respectively. and  describe the relative 

duration of colonization of the strains. The higher  ( ) is relative to other strains, 

the longer (shorter) its relative duration of carriage; we can similarly model a 

biological fitness cost for resistant strains.  

The colonization pressure from strain s  is L s = bs rqsWQ xqs + yqs( )
qs>0

å , where  is a 

strain-specific rate and  is the relative strain density of strain s . We can 

place an upper limit on the level of new colonizations at some density level . 

New colonization beyond that level is considered insubstantial in quantity. Both L

and M  cap the multiplicity of carriage (MOC). For example, in a model with 

and , hosts can carry only five strains at a time, inducing further intrinsic 

competition in the colonization process (in Figure 2, ). Multiplicity of carriage 

does not affect infectiousness beyond the indirect effect of competition between the 

strains carried on duration and prevalence of colonization. 



Alternatively, we can model strain competition more directly within hosts (e.g., 

generation of pneumococcal bacteriocins, or pneumocins, targeting other strains) 

[64], with higher overall colonization levels and relative “dominance” directly 
affecting decay. Let  be the set describing relative dominance 

between strains. We assume a decay function for strain s  that maintains both equal 

total decay and the relative densities between strains, ,  

such that it is a function of relative duration ( ), the density of strain s  (qs ), and 

the summation of densities weighted by relative dominance ( ). Growth can be 

constructed in a similar manner or, for simplicity, held constant. The functions as 

described here are by no means the only possibilities, and if, for example, we 

assume log density levels, we can square quantity levels. The two-strain model is 

given in the supporting materials S1.2.  

Immunity 

Host serology in a multistrain model introduces additional complexity and 

uncertainty. In addition to the short-run effects on prevalence and incidence, the 

immune response invoked to pneumococcal carriage and infection propagates long-

run changes to the strain structure and to the pattern of disease. Uncertainty 

remains because of the lack of a cohesive theory on naturally acquired immunity 

and strain interdependencies. A forward-looking policy model needs to capture that 

long-run uncertainty. Though some research suggests that there may be 

homologous serotype-specific immunity for a few serotypes [65], other research 

suggests that more than one mechanism is at work. Serotype-dependent immunity 

is induced by the protective effects of antibodies to pneumococcal capsular 

polysaccharides and is acquired through prior colonization or disease [27]. 

Additionally, there is evidence of antibody cross-serotype protection [65]. 

Researchers have advocated the recognition of serotype-independent immunity, 



posing three hypotheses: the acquisition of antibodies during carriage to 

pneumococcal protein antigens that exist across strains and serotypes, T-cell 

mediated immunity, and the general maturation of the immune system [42,45]. 

Markov-chain processes can describe the different channels of the acquisition of 

host immunity. For the purpose of generalization, let  be the set 

of immunity levels to subsets of strains. That is, kvprovides protection to the set of 

strains . Let v ' be a set containing all strains of the same serotype. kv '

represents serotype-dependent immunity and provides protection for each strain 

. The set describes strain-independent, or strain-transcending, 

immunity. Any other set describes cross immunities between strains. Waning (

) and waxing ( ) of immunity to the strains in the set v  are functions of 

the sum of the set of  bacterial densities (Q) and the prevailing immunity level (K ). 

The states xQ,K
 and yQ,K

 indicate both the colonization level of a strain and the host 

immunity level to each subset of strains. 

Similar to the one-strain dynamics, the effects of immunity were built into the 

transmission, growth, and decay dynamics, and we ignore direct effects of the host’s 

immune system on infection. If  is a set of all the subsets of strains to which strain 

s  belongs, the colonization pressure of strain s  for an individual with the set of 

immunities K  is , where 

. Colonizing bacteria survival is inhibited by host serology in 

addition to competition with other strains. The decay function is 

, where hv  is a subset-specific 

protection, which reduces the duration of carriage. Equations for a generalized 

immunity model are available in the supporting materials S1.3. 



For the purposes of policy evaluation, vaccination would be implemented in the 

model similarly to immunity. Modeling the pneumococcal conjugate vaccine could 

incorporate serotype specific immunity, as well as cross-immunities where evidence 

suggests it exists.  

 

Results 

Compartmental models typically represent colonization dynamics as a simple 

Boolean state (i.e., colonized or not) with a single parameter describing the waiting 

time to clear. Extensions of these simple compartment models all have specific 

limitations that would ideally be avoided in a model designed to address the 

intrinsic complexity of the biology and incorporate new information to inform 

policy. We developed a Markov-chain model that is capable of describing a large 

range of complicated dynamics within a host, but given the paucity of data, the 

parameters can be restricted to consider a one-parameter family of growth and 

decay that produce similar dynamics. The following sections describe many of the 

issues that arise in modeling the reservoir dynamics and fitting those models to 

data. The model assumed similar dynamics in the colonized population and in the 

infected population (i.e. infection at level i  represents infection with a background 

colonization at that level). Therefore, when we discuss the colonization and 

reservoir dynamics infection dynamics should be interpreted similarly. 

Reservoir Dynamics  

A primary issue in any infectious disease model is the duration of carriage. 

Compartmental models adopt the exponential as a one-parameter family of 

distributions, for colonization with a single strain with no immunity. The advantage 

of an exponential distribution is that it is characterized by a single parameter. The 

disadvantage is the difficulty of extending it to multistrain models while maintaining 



neutrality (see below). Another disadvantage is that the exponential family of 

distributions does not account for variability in the underlying population density 

over time, so it does not provide a natural method for dealing with the problem of 

detectability. These problems are dealt with naturally in the Markov-chain model 

presented here by representing colonization with an entire chain of states. 

In these models, time to clear is represented as the waiting time to random-walk 

from any state of colonization to the state of being uncolonized. The properties of 

this random walk may be different to an observer who is sampling the population 

depending on the underlying densities. Figure 3 illustrates results of simulations of 

carriage from a one-strain model with immunity. The models with simple stage-

structured immunity also produce patterns of colonization that are consistent with 

age cohort colonization distributions. Though the model introduces an enormous 

amount of structural complexity compared with the simpler compartment model, by 

representing growth and decay from various states with simple functions, or by 

imposing some family of parameters with known properties, it is possible to model 

the duration of carriage by varying a single parameter. The model thus permits a 

vast amount of parametric complexity but can also be used in the same way as 

typical compartment models.  

The mathematical formulation addresses another issue, the difference between 

colonization at any level and the relationship that must exist between bacterial 

colonization levels and the likelihood of detection (Figure 4). This formulation 

inevitably introduces another parameter or functional relationship describing 

detection as a function of the underlying states. This approach has the advantage of 

providing a direct link between studies designed to measure carriage over time 

when detection is an issue, and it can ultimately provide additional information 

about the fluctuations in bacterial populations over time.  



Bacterial Competition and Neutrality 

Bacterial competition is likely to play an important role in determining the 

frequency of strains and the strain structure of bacteria. It is possible to model 

competition in compartment models, but the form of competition is often 

determined by the stiff structure of a model. A properly formed strain model must 

be capable of modeling the dynamics of two strains that are identical in every way 

as if they were identical in every way—for example, arbitrarily splitting the 

population and following the progeny should not guarantee the coexistence of these 

two new arbitrarily defined entities [63]. At the same time, other kinds of 

competition and noncompetition must also be possible. Markov-chain models can 

solve these problems by making competition a function of bacterial states or by 

considering competitive dominance, allelopathy, or other forms of direct 

interference by one strain on another through a simple change in the parameters 

describing bacterial interactions within a host. 

To achieve “ecological neutrality,” the number of hosts carrying bacterial densities 
at any level 0  to L  is dependent on the ecological state variables 

, where in the two-strain case , but is 

independent of the particular strain [63]. We show that is the case in the supporting 

materials S2.1. 

For “population genetic neutrality” [63], starting from a given relative frequency of 

bacterial densities between different strains, that relationship should stay constant 

through time. Strain competition in the model takes place across three avenues: 

growth, decay, and transmission. To achieve population genetic neutrality, the 

values for these processes along the diagonal , or in the two-strain 

model , must be equal. For example, total growth from  is equal 

, total decay is equal , and infectiousness 



 is equal. Given these constraints, there will be no bias in 

transitions between states and the model will be neutral. 

We define prevalence of carriage in a population as the ratio of colonized hosts over 

the number of individuals in the population, V
1
=

xi, j
i>0

å
X

 for strain 1; it is 

insensitive to the bacterial density levels. The abundance of bacterial densities 

carried in a population for strain 1 is  and similarly for strain 2. 

Figure 5 illustrates the intrinsic competition of two strains identical in every way 

and demonstrates that the ratio 
A

1

A
2

 remains constant through time at the value set 

by the initial conditions ( A
1
= 0.9,A

2
= 0.1). The prevalence ratio shifts slightly, such 

that prevalence ratio of strain 1
V1

V1+V2
= 0.89981 by year 25, to maintain a constant 

abundance ratio. 

In Figure 5 (panels B and C) decay is modeled as described, and total growth (from 

both strains) is held constant. In panel B strain 1 is more dominant than strain 2 (

), with all other strain attributes being identical. Duration of carriage is 

reduced to a higher degree for strain 2 in hosts that carry both. If only one of the 

two strains is present in a population, there is no difference in their respective 

prevalence. The prevalence of either strain is lower when both strains are present in 

a population. However, without selection (e.g., resistance and antibiotic use), the 

prevalence of strain 2, the less dominant strain, is decreasing. As the reduction in 

strain 2 occurs, the prevalence of strain 1 increases asymptotically toward its level 

as the sole strain in the population. In panel C strain 1 remains more dominant 

when a host carries both; however, in singly colonized hosts, the baseline duration 

of carriage is slightly greater for strain 2. Because of the low levels of co-

colonization in this case, that slight difference has more influence than the relative 

dominance. We start at year 0 with 100% of the population co-colonized, and the 



more dominant strain 1 initially emerges as the more prevalent. However, the 

longer duration with strain 2 proves to have a stronger effect, and as colonization 

with it increases, it crowds out strain 1. 

The polymorphic attribute of strains (they can represent differing serotypes or be 

strains of the same serotype) creates a flexible model structure. It insures that 

increasing strain complexity does not require major reconstruction of the model. 

The strain-specific parameters here are , ,  and  (either  or  can be 

held constant). 

Immunity 

Pneumococcal models generally ignore natural immunity, set an age-specific force 

of infection to simulate it [6,12,66], or construct an age-dependent contact network 

[15]; defining a high contact rate within a community with already high prevalence 

exacerbates that prevalence. While age may be an important factor in the 

maturation of the immune system and for social reason, basing dynamics only on 

age may mischaracterize important aspects of the long-term dynamics in a 

population that loses its naturally acquired background immunity as vaccination 

proceeds, as has been suggested for pertussis [67]. In addition, the models may 

overestimate vaccine efficacy when they ignore naturally acquired immunity or 

when immunity is simulated solely through an age-specific force of infection. If 

immunity is at least partially acquired through prior colonization, higher carriage 

rates early on would offer the population protection.  

This Markov-chain model considers stage-structured immunity, in which the 

presence of bacteria stimulates an immune response after some time. The 

epidemiological properties of the bacteria change as a result of this immune 

response. In reality, immunity is likely to be one of the most important factors 

limiting the duration of colonization, the incidence of disease, and other aspects of 

transmission and community dynamics.  



Figure 6 shows the evolution of colonization and immunity (two levels of immunity) 

in a two-strain simulation with a higher transmission of strain 2 ( ) relative 

to strain 1 ( ); the strains are identical across all other parameters. Panel 

A simulates serotype-specific immunity. The increased transmission of strain 2 

leads to a higher immunity prevalence in the population, reducing the gap in 

colonization prevalence relative to a model with strain-transcending immunity 

(panel C) or a model with no immunity. The prevalence of strain 1 (and hence also 

its immunity level) is affected by the competition with strain 2 in the population, 

and the prevalence of both oscillates until the equilibrium immunity level is 

reached. In Panel B, we alter the rate of gaining immunity for strain 1 such that it is 

double that of strain 2. The prevalence of immunity to strain 1 increases to a level 

higher than that of strain 2 by the second year, which reduces its colonization 

relative to strain 1. In panel C, showing strain-transcending immunity, strain 1 is 

marginalized by the more prevalent strain 2.  

Immunity in these models is flexible with respect to the degree of cross-immunity. 

Increasing immunity can affect two different strains in the same way, as if they were 

identical, or it can be independent of the strain type. Cross-immunity to any degree 

can be incorporated for any set of strains. These patterns of cross-immunity, like the 

patterns of bacterial dominance, are likely to be the underlying causes of the 

distribution of strains in a community and important mechanisms for 

understanding strain replacement. 

Discussion 

We demonstrate a mathematically consistent framework for modeling pneumococci 

based on a variety of epidemiological, ecological, and immunological mechanisms 

that remain poorly quantified. The model provides a platform to simulate 

pneumococcal reservoir dynamics and evaluate policies while respecting the 

underlying uncertainty. Our framework has a flexible strain structure: different 



strains can be defined as different serotypes or as the same serotype with differing 

markers. Strain interdependencies are built into the model through two channels: 

through competition via the limiting resource for the bacteria (the susceptible host 

population) and through host immunology. The resulting model makes it possible to 

consider many strains in a consistent framework and capture a complex range of 

biological events. Phenomena that have been considered in independently derived 

compartment models can thus be considered here as quantitatively different aspects 

of the same model. Extending the model—for describing specific settings or 

expounding on new scientific knowledge—requires some recalibration but no 

massive reconfiguration. 

One component we did not elaborate on in this model is important for a full-scale 

epidemiological model: namely, infection. We assume both that colonization is the 

main driver of disease spread and that infection follows a fairly predictable time 

course, and it can be modeled simply by incorporating transmission and clearance 

parameters and coupling infection states parallel to the carriage-level ones. This 

modeling framework makes it possible to compare the number of lives saved in 

different biological scenarios with varying policies. Incorporating the infection 

dynamics will allow analysis of intervention policies. Taking into account mutations 

and horizontal gene transfers, resistance can be modeled with a Markov-chain 

model, similar to colonization and to host immunity. Selective effects of policies, 

drug pharmacokinetics, and human behavior can be studied. 

The Markov-chain design also opens new paths for studying colonization ecology. 

One of the questions arising from the analysis of PCV-7 effects is how to distinguish 

between serotype replacement and unmasking [68]. Tests on nasopharyngeal swab 

samples may fail to detect lower-density serotypes in hosts with multiple carriages. 

Although vaccination has likely led to serotype replacement, the magnitude could 

have been exaggerated; with the quantity of vaccine serotypes reduced, tests may 

have revealed the previously undetectable lower-density serotypes. The Markov-

chain model makes it possible to investigate that likelihood in different scenarios. 



The framework provides one way to build flexible and extensible yet parsimonious 

models of the pneumococcus. However, even though the intellectual complexity 

does not drastically increase with the addition of strains, the computational 

complexity does rise. To surpass the issue, we are developing an individual-based 

simulation model that is, in at least one case, analogous to this framework and 

capable of incorporating other factors (e.g., heterogeneous population mixing) that 

usually complicate the modeling. The paired development of these models allows 

for covalidation to more reliably simulate and understand pneumococcus bacterial 

population. Several issues remain to be addressed to model pneumococcal dynamics 

in countries, including the geographical variation in the bacteria and their human 

host populations, and the effect of existing and planned interventions. These 

represent important future applications of this model.  
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Figures 

Figure 1. One-strain dynamics 

 

Markov-chain model of one-strain dynamics (Λ is the force of infection; xi=0 

describes the portion of the population that is not colonized and xi>0 describes the 

population in the categorical level of colonization i; bi and di are the colonization 

growth and decay rates from level i, respectively). 



Figure 2. Two-strain colonization dynamics 

 

A two-strain Markov-chain model of colonization dynamics (xi,j describes 

colonization at levels i for strain 1 and j for the strain 2, Λ1 and Λ2 are the force of 

infection for the strains; and  and  describe growth and decay in strain 

s, respectively). 



Figure 3. One-strain model simulations 

 

A one-strain model with immunity with multiplicity of colonization, M=1, and a 

decay function that approximates mean colonization duration at 67 days : (A) the 

Markov-chain model with 10 colonization levels (μ = 1/70 years, λ = 0.5, α = 0.135, 
h = 5, γ = 1, β = 0.1, m = 0.1, ω = 1/180, η = 1/100,000); (B) a one-strain 

compartmental model with immunity (αk=0 = 1/durationk=0, αk=1 = 1/durationk=1, 

where durationk is the approximate duration of colonization under the Markov-

chain model, and μ, ω and η are equivalent to that model). Row 1 is the evolution of 

the model, and row 2 is the distribution of colonization across age groups. 



Figure 4. Within-host stochastic colonization simulation 

 

Within-host stochastic simulation of bacterial colonization level over time. The 

dotted red line represents an artificially set level for detection of colonization. 



Figure 5. Two-strain model simulations with no immunity 

 

A two-strain model with no immunity. In each scenario we simulate each strain with 

the other not prevalent in the population, and each strain when the other is also 

prevalent in the population. Column 1 provides the survival curve for each strain, 

and column 2 provides the colonization prevalence in the population given the 

initial abundance of bacteria of each strain. Scenarios: (A) two identical strains with 

an approximate mean colonization duration of 62 days when there is no multiplicity 

of colonization and 55 days when there is multiplicity  (M = 2, λs  = 0.181, αs = 0.13, 

γs  = 1, βs = 0.002, W = density level; (B) both strains have an approximated 

duration of colonization of 106 days, strain 1 is the dominant strain and when the 

strains co-colonize its duration is approximately 77 days while it is 47 days for 

strain 2 (M = 2, λ = (0.5, 0.5), α = (0.06, 0.06), ρ = (1, 1.5), β = (0.004, 0.004), W = 
density level); (C) strain 1 is the dominant strain (and clears after approximately 



102 days when alone and 71 days when competing with strain 2), but strain 2 clears 

at a slower rate (it clears after approximately 106 days when alone and 47 days 

when competing with strain 1) (M = 2, λ = (0.5, 0.5), α = (0.061, 0.06), ρ = (1, 1.5), 
β = (0.004, 0.004), W = density level). 

Figure 6. Two-strain model simulations with immunity 

 

A two-strain model with two levels of immunity. Scenarios: (A) strain-dependent 

immunity (λ = (0.5, 0.5), α = (0.105, 0.105), ρ = (1, 1), β = (0.015, 0.02), W = 

density level, ηs,i (1/180), ωs,i(1/730)); (B) strain-dependent immunity with 

increased immunity waxing of strain 1 (same parameters as in A excluding 

ωs,i(2/730)) ; (C) strain-independent immunity (same parameters as in A)  



Supporting Material 

1. Model ODEs 

1.1. One-Strain Reservoir Dynamics: Markov-Chain Model 

The reservoir dynamics are described by a Markov-chain model of the colonizing 

bacterial quantity levels. 

 

 

 

The quantity is described by the level i . Transmission of colonizing bacteria occurs 

from density level 0 to density level 1. The colonization pressure is 

 

where infectiousness (W ), describing the rate at which individuals transmit 

colonizing bacteria, is a function of bacterial densities such that  and 

. Acquiring colonizing bacteria, , is a function of the potential host’s 

immunity level k : 

 

Immunity increases at the rate , such that  and , and  and 

. It wanes at the rate , such that  and , and  and 

. There is no increase in immunity from  or from and no waning 



from . The decay function d  is increasing in the bacterial quantities,  

and , and in the immunity level. For simplicity the growth function is held 

constant,  and , . There is no bacterial growth or decay from the 

uncolonized state ( and ), and no growth from the capacity level (

). 

 

1.2. Two-Strain Model without Immunity 

The two-strain model can be described by an infinite set of coupled equations 

describing colonization and infection. 

 

 

 

  

where  and L  caps bacterial quantities such that . 

Transmission of colonization of strain s  occurs into states xQ  such that 

 and . Transmission of new bacterial densities into yq  requires 

that ; the bacterial quantities describe the background colonization and there 

is no infection without prior colonization. The colonization pressure is 

 and the functional form is 



 

where . Growth and decay occur from both strain 1 and strain 2. bQ  and  

dQ  are total growth and decay from a given state, and the notation  and 

  describe growth and decay in strain s  , respectively. There is no decay from 

. We keep b constant; however, competition for resources implies that 

 and . To incorporate direct inhibition of one colonizing 

strain on another, the vector  describes the relative dominance of the 

strains, and  and  . We use the following functional form for decay: 

 

where  is a strain specific rate affecting decay function, and therefore colonization 

duration, whether another strain is colonizing or not. Births occur into the 

uncolonized state: 

 

1.3. Two-Strain Model with Immunity 

Immunity adds additional dimensions to the model. Colonized states are modeled 

according to the following: 

 

  



 

 

 

where  represents the set of immunity levels to each set of 

strains v . Given a set v ', which contains all strains of the same serotype, kv '

represents serotype-dependent immunity and provides protection for each strain

.  The set  describes strain-independent, or strain-transcending, 

immunity. Any other subset of S  represents cross immunities. The increasing rate 

of subset v  is  and its waning rate is . The former is an increasing 

function of  and the latter is a decreasing function of qv . If  is a set of all the 

subsets of strains to which strain s  belongs, increases in the colonization pressure 

of strain s  can be written as follows: 

 

 where . The decay function is: 

 

where hv  is an immunity subset specific inhibition of colonizing bacteria. The 

infection dynamics (Y ) are similar to the two-strain dynamics described in 1.2, 

incorporating the immunity dynamics described here. 



2. Neutrality 

2.1 Ecological Neutrality 

Taking the reservoir dynamics (not including infection for simplicity) of a two-strain 

model with no immunity from Appendix 1.2, let  be the 

ecological state variables where . Assuming functionally identical 

strains, we can write the system of equations as follows: 

 

 

 

 

The system can be written without referring to any given strain. 

 


