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Abstract 

We use analytical and numerical models to explain and quantify the welfare effects of subsidies 

for artemisinin combination treatments (ACTs), a valuable new class of antimalarial drugs. There are two 

(second-best) efficiency rationales for such subsidies: by expanding drug use, they reduce infection 

transmission from one individual to another, and they slow the evolution of drug resistance by deterring 

use of substitute monotherapy drugs for which resistance emerges more rapidly than for ACTs. 

 

Our analysis merges epidemiological models of malaria transmission among individuals and 

mosquitoes, evolution of drug resistance, and economic models of the demand for alternative drugs; 

parameter values for the simulations are representative of malaria prevalence in sub-Saharan Africa. We 

find that large subsidies for ACT are welfare improving across many plausible scenarios for malaria 

transmission, drug-demand elasticities, and evolution of drug resistance; the benefits of the policy are 

often several times larger than the costs. 
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Should New Antimalarial Drugs Be Subsidized? 

 

Ramanan Laxminarayan,* Ian W.H. Parry, David L. Smith,  
and Eili Klein 

 

1. Introduction 

Malaria continues to be a serious global health challenge that causes an estimated 300 million to 

500 million infections and more than 2 million deaths each year; approximately 90 percent of deaths 

occur in sub-Saharan Africa (Snow et al., 2005; Roll Back Malaria et al., 2005). The rapidly declining 

effectiveness of chloroquine (CQ) and other antimalarial drugs is a major cause of increased morbidity 

and mortality from malaria in recent decades (Trape et al., 1998; Trape, 2001). A new class of 

antimalarials, called artemisinins, to which little or no resistance has arisen, is now widely available.1 

Although artemisinins are more costly than other drugs, they provide effective treatment and the potential 

to roll back malaria. However, as with other drugs, resistance to artemisinin may evolve quickly, 

especially if this class is used intensively as a monotherapy treatment (Jambou et al., 2005).    

The World Health Organization (WHO, 2001) has recommended that artemisinin be used in 

combination with a partner drug, unrelated in mechanism of action and genetic bases of resistance, so that 

a single mutation cannot encode resistance to both components. If artemisinin combination treatments 

(ACTs) are used instead of artemisinin monotherapy treatments (AMTs) and the partner drug, this should 

slow down the emergence of antimalarial resistance. However, the WHO guidelines are routinely flouted, 

given that AMTs and other monotherapies are much less expensive than ACTs. In response to this 

problem, a recent Institute of Medicine report (Arrow et al., 2004) recommended establishing an 

international fund to buy ACTs at producer cost and resell them at a small fraction of that cost.  

On economic-efficiency grounds there is a second-best case for subsidizing ACTs, because the 

ideal policy of taxing AMTs and other antimalarials according to the marginal external cost from the 

elevated risk of resistance evolution is infeasible, given their widespread use in the informal sector. The 

                                                 
* Corresponding author: Resources for the Future, 1616 P St., NW, Washington DC 20036, Ramanan@rff.org. Ian 
Parry and Eili Klein are at Resources for the Future; David Smith is at the Fogarty International Center, National 
Institutes of Health. We are grateful to Ian Hastings, Dean Jamison, Phil Musgrove, Mead Over, Robert Ridley, and 
Allan Schapira for comments on an earlier draft. The views expressed here are the authors’ alone and do not imply 
any official policy position of the Fogarty International Center, National Institutes of Health, Department of Health 
and Human Services, or the U.S. government.  
1 Artemisinins are derived from the plant Artemisia annua, which is cultivated in China and Vietnam. Although the 
plant had been used for centuries as a treatment for fevers, the compound that acted against malaria was not 
discovered until the 1970s (Hien et al., 1993).  
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efficiency argument is further strengthened by the positive externality to the extent that effective 

treatment by one individual reduces the risk of infection transmission to other individuals. Nonetheless, it 

is still critical to understand what level of subsidy might be appropriate, and to what extent this varies 

with malaria prevalence across different regions, the risk of resistance evolution, drug-demand responses, 

the extent of donor financing, the cost of illness, and other factors. 

Although some theoretical literature exists on optimal drug taxes and subsidies (Philipson and 

Mechoulan, 2003; Rudholm, 2002), there have been few attempts to empirically apply this theory, and 

none in the context of antimalarial drugs. This paper seeks to fill this gap. We begin with a static, 

analytical representation that provides insight into the resistance and transmission externalities and the 

welfare effects of ACT subsidies. Following that, we integrate a dynamic model of malaria transmission 

between humans and mosquitoes, and the spread of drug resistance, adapted from recent epidemiological 

literature, into a utility-maximizing model of drug demand, to simulate the effects of ACT subsidies. 

Calibrating the model is challenging because of uncertainty over, and spatial variability of, several 

epidemiological parameters, and the difficulty of gauging the demand response to very large price 

changes.  Our objective is therefore to identify the circumstances under which large, recently proposed 

ACT subsidies might be warranted on efficiency grounds, rather than to provide finely tuned estimates of 

optimal subsidies. 

We estimate that large subsidies for ACT are efficiency enhancing in many scenarios. For modest 

subsidies, the effect is mainly to crowd out the use of monotherapies and increase the average useful life 

of drugs, whereas for large subsidies, overall drug demand starts to expand, thereby lowering disease 

transmission.  These two sources of efficiency gain outweigh the distortionary cost of the subsidy in most 

cases. In fact, overall discounted benefits (over a 20-year horizon) are often several times higher than 

discounted costs; moreover, welfare gains are much larger still if external donors financing the program 

enjoy significant altruistic benefits. The main exception when large subsidies are not warranted by 

externalities (aside from when drug-demand responses are extremely limited) is when transmission rates 

are very high (in excess of about 60 to 80 infectious bites per year); in this case, expanding ACT use has 

little impact on reducing the infection rate, since treated individuals quickly become reinfected and 

efficiency gains from the treatment externality are small.  

 

2. Analytical Model 

We begin with a theoretical model to help interpret the transmission and resistance externalities 

and the welfare effects of ACT subsidies. The model is highly simplified: it is static, incorporates only 

two drugs, and does not distinguish immune individuals from those susceptible to infection; these and 

other restrictions are relaxed in the subsequent simulation model. 
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2.1. Assumptions 

We adopt a homogeneous-agent model where the agent represents an average over people of 

different ages within a region of given malaria prevalence. Utility is defined by: 

(2.1a) },,{ Exnuu INF= , },{ MMCC AeAeEE =  

(2.1b) },{ MCCC AAee = , },{ MCMM AAee = ,  },{ MMCC

INFINF AeAenn =  

where variables are per capita, present values over the period, and a bar denotes a population-wide 

variable that is exogenous to the individual. 

 Utility u{.} declines with instances of malaria infection nINF, which cause incapacitation, elevated 

mortality risk, and other morbidity complications (for now, assume all infections are symptomatic); utility 

increases with a general consumption good x and subutility E{.} from effective drug treatments. E 

increases with consumption of artemisinin combination and monotherapy treatments, denoted Ai (i = C, 

M). ei{.} is the effectiveness of drug i, or the probability that the treatment will kill the infection; ei 

declines as drug resistance evolves during the period in response to population-wide use of both drugs 

( , < 0, 0 ≤ ei ≤ 1).2 We assume that drugs are imperfect substitutes even if they have the same 

effectiveness (e.g., because of differences in access costs, consumer familiarity, risk of side-effects). 

Finally, we assume the infection transmission rate 

1ie 2ie

INFn {.} declines with the effective drug treatments of 

other households. 

The household budget constraint is:  

(2.2)  INCxpApAsp xMMCC =++− )(

where INC is (fixed) household income and pC, pM, and px denote producer prices of the two drugs and the 

general good and equal (constant) marginal supply costs;3 s is a per-unit subsidy for ACT. pC > pM 

because of the higher cost of ingredients for producing ACT.  

 We assume that the burden of the subsidy is borne by foreign donors who enjoy an altruistic 

benefit of µ per $1 of spending; the net (global) cost of financing the subsidy is therefore CAs)1( µ− .4 

                                                 
2 That is, a parasite that becomes resistant to ACT is more likely to also be resistant to AMT, and vice versa, given 
that the two drugs have a common ingredient (artemisinin).   
 
3 In developed countries, pharmaceutical companies price patented drugs above marginal costs to recoup R&D 
investments, while at the margin drug costs may be borne by third parties rather than consumers. We ignore these 
complications, given that artemisinin drugs in sub-Saharan Africa are not restricted by patents, and they are mainly 
purchased directly by individuals with out-of-pocket payments.  
 
4 There has recently been much discussion of the potential use of internationally coordinated taxes (e.g., on 
international air travel in high-income countries) as a source of finance for measures to counter malaria and other 
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However, for most of our simulations below, we ignore altruistic preferences and assume µ = 0, given 

that their qualitative effect on the optimal subsidy is straightforward and that the extent of altruism is 

difficult to gauge empirically.  

 Optimizing (2.1) subject to (2.2) yields the agent’s first-order conditions: 

(2.3) spe
A

E

u

u
CC

Cx

E −=
∂
∂

, MM

Mx

E pe
A

E

u

u
=

∂
∂

  

Agents consume drugs up to the point where the marginal private benefit (in consumption equivalents), 

adjusted for drug effectiveness, equals the market price. Note that the marginal benefit from treatment 

 will be less than the cost of an untreated illness spC − xn
uu INF /−  because of, for example, access costs 

and illness prior to recovery from treatment (thus, not all symptomatic malaria infections are treated, even 

if drug prices are less than the cost of illness). We assume that marginal utility from drug treatment is 

declining (e.g., because of rising access costs for individuals in rural areas) such that drug-demand curves 

are downward sloping. 

 

2.2. Welfare Effects and the Optimal Level of ACT Subsidy 

 From totally differentiating the indirect utility function, the welfare effect of an incremental 

increase in s is (see Appendix): 
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,  i, j = C, M 

  is the marginal external benefit due to use of drug i on reducing disease transmission for 

given drug effectiveness; it equals the per capita reduction in infection risk to others, 

T

iEXT

i

INF An ∂∂− / , times 

the cost of illness.  is the marginal external cost of using drug i due to reduced future drug 

effectiveness.  A unit increase in  reduces the effectiveness of drug j by 

R

iEXT

iA ij Ae ∂∂− / ; each unit 

reduction in drug effectiveness reduces utility by jE eEu ∂∂⋅− / , because of the reduced likelihood of 

successful treatment, and also by j

INF

n
enu INF ∂∂⋅− / , because of the greater risk of infection 

transmission from other agents using drugs.  

                                                                                                                                                             
infectious diseases (e.g., Atkinson 2005). An alternative interpretation of µ > 0 is that, from a global welfare 
perspective, the donor may have a lower social welfare weight than the recipient country. 
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  Figure 1 illustrates the first two components of the welfare change in (2.4a), for the case when 

 and > .  In each panel, the marginal social cost of drug use exceeds the 

producer cost by , and for ACT there is a further wedge of s between the producer cost 

and the demand price. An incremental increase in s induces a downward movement along the demand 

curve for ACT in the top panel, inducing a welfare loss, shown by the shaded rectangle with base 

 and height . However, in the lower panel the demand curve for AMT shifts 

in, causing a welfare gain, shown by the rectangle with base 

R

C

R

M EXTEXT > R

iEXT T

iEXT

R

iEXT T

iEXT−

dsdAC / R

CEXT sEXT T

C +−

dsdAM /−  and height . 
R

MEXT T

MEXT−

 The third component in (2.4a) is a welfare gain due to the possible altruistic benefits accruing to 

donor countries; it equals the marginal increase in the subsidy payment times µ.   

 Equating (2.4a) to zero yields the theoretically optimal subsidy 

(2.5a) 
µ

µβ
−

+−−−
=

1

)/()()(* dsdAAEXTEXTEXTEXT
s CC

T

C

R

C

T

M

R

M  

(2.5b) 
dsdA

dsdA

C

M

/

/
−=β  

where β defines the (marginal) crowding out of other drugs—that is, the reduction in AM relative to the 

increase in demand for AC. If there were no resistance and µ  = 0, then , which is 

positive with imperfect crowding out (β < 1).  The optimal subsidy is higher still with resistance evolution 

(as long as β is not too small), and with altruistic preferences.  

T

M

T

C EXTEXTs ⋅−= β*

 

3. Dynamic, Numerical Model 

 Although (2.4) and (2.5) provide useful intuition, they cannot be computed because resistance, 

disease transmission, and drug effectiveness (and hence  and ) vary endogenously with 

drug use; moreover, the prior model provides only a steady-state representation of complex dynamic 

processes and considers only two drugs. Therefore, we now adapt a dynamic formulation of infection 

transmission and resistance evolution from recent epidemiological literature (Bonhoeffer et al., 1997; 

Koella and Antia, 2003; Laxminarayan, 2004; Smith and McKenzie, 2004) and merge it with demand 

functions for three alternative drugs; after compiling the available evidence to parameterize the model, we 

solve by numerical simulation.  

T

iEXT R

iEXT
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3.1. Epidemiological Framework 

We describe malaria transmission first with no resistance and one drug, then with resistance 

distinguishing three drugs. We then discuss how the transmission rate depends on mosquito 

characteristics. 

 

3.1.1. Disease transmission without drug resistance. At any particular point in time, t, the population is 

divided into three groups, ; NSUS includes people susceptible to infection, NINF 

are those who are infected, whether symptomatic or not or being treated or not; and NIMM are those who 

have recently recovered spontaneously (i.e., without treatment) from an infection and are now immune.5 

The rates of change for the population subgroups are: 

IMMINFSUS NNNN ++=

(3.1a) BNNaNh
dt

dN IMMINFTRSUSN
SUS

++++−= γρδ )(  

(3.1b) 

INF
SUSdN

hN
dt

= INFNINFSPTR Naa ))1(( δδρρ ++−+−  

(3.1c) =
dt

dN IMM
INFSP Na ρ)1( − ( )N IMMNγ δ− +  

where δN, ρTR , ρSP , and δINF are exogenous and h, a, γ, and B are endogenous (see below). 

h is the transmission rate—that is, the rate at which the susceptible population becomes infected; 

γ is the rate at which people lose immunity and become susceptible again (the inverse of the average 

duration of immunity); and a is the fraction of infected individuals receiving drug treatment, which equals 

the fraction of infected people who are symptomatic times the drug coverage rate of these individuals. ρTR 

is the recovery rate for treated individuals (the inverse of time taken for drugs to cure an infection) who 

go straight to being susceptible,6 and ρSP is the spontaneous recovery rate, where . δINF and δN 

are the mortality rates from malaria and all other causes of death. To focus on a fixed population size, we 

assume that malaria-specific and other deaths are exactly balanced by new births B, which start out as 

susceptible (we assume that infants have no immunity), therefore,  (results are not 

TRSP ρρ <

NNB NINFINF δδ +=

                                                 
5 The immune group is commonly referred to as resistant in SIR (susceptible, infected, resistant) models of infection 
transmission; however, we use different terminology because we later need to distinguish those who are resistant or 
immune to infection from those who are resistant to drugs.   
 
6 This is consistent with most evidence (Pringle and Avery-Jones, 1966; Cornille-Brogger et al., 1978), although 
some models allow for some period of immunity following treatment (e.g., Koella and Antia, 2003). 
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sensitive to other assumptions). All variables and parameters represent averages for people of different 

ages within the population group.7 

 

3.1.2. Incorporating drug resistance. We now distinguish three drugs: ACT, AMT, and PMT (a partner 

drug whose costs are consistent with sulfadoxine-pyrimethamine) denoted i = C, M, and P where ACT 

combines M and P.  Resistance arises spontaneously through genetic mutation when individuals take 

drugs, and it can be transmitted to others through mosquito bites. The infected population is divided into 

four groups, , where  is those infected with a nonresistant or 

wild-type infection,  and  are those whose infections are resistant to either M or P, and  

is those whose infections are resistant to both drugs, and hence also ACT. 

INF

C

INF

P

INF

M

INF

W

INF NNNNN +++= INF

WN

INF

MN INF

PN INF

CN

Population groups now change according to: 

(3.2a) 
SUSN

SUS

Nh
dt

dN
)( δ+−= )1( iii
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TR raN −Σ+ ρ )1)(( PPCP
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TR araaN −++ ρ  

    )1)(( MMCM
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TR araaN −++ ρ BN IMM ++ γ

(3.2b) 
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SUSW
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dN
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dt
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TR aN Σ− ρ ))1(( NINF

ii

SP
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(3.2c) 
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SUSM

M

dN
h N
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TR aaN +− ρ MM
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TR arNρ+  

))1(( NINF
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(3.2d) 
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(3.2e) 
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INF

PCPP

INF

MCPM

INF

W
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7 Children are far more susceptible to malaria infection and mortality than adults, because people build up immunity 
with instances of infection over the life cycle. If we were studying a population with changing demographics over 
time, we would need to factor this into our choice of parameter values. 
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ai is the fraction of infected individuals using drug i, ri is the probability that use of drug i will 

spontaneously lead to a mutation that is resistant to that drug, and we assume mortality and treatment 

recovery rates are the same across subgroups of infected individuals.8 However 

—that is, the spontaneous recovery rate is greater for resistant than for wild-type 

infections, and is greatest for infections resistant to both drugs; resistant strains therefore face a “fitness 

cost” and would eventually die out if all drug use ceased (Hastings and Donnelly, 2005).  

SP

W

SP

P

SP

M

SP

C ρρρρ >> ,

 The essential difference between (3.2) and (3.1) is that some people using drugs who are infected 

with the wild-type strain now become resistant to that drug and move into the ,  or  

subgroups. In addition, of those who are resistant to one of the monotherapies, some who use the other 

monotherapy or ACT move to the susceptible group, while others also become resistant to that drug and 

move to the  group. Once in the  group, individuals are resistant to all drugs and can only 

recover spontaneously.  

INF

MN INF

PN INF

CN

INF

CN INF

CN

 

3.1.3. Mosquito characteristics and the transmission rate. Suppose ρ is the number of times a mosquito 

bites a human each day, b1 is the probability that biting an infected human will infect the mosquito, 

 is the fraction of humans who are infectious with strain i, and δmos is the mosquito 

mortality rate. Then the probability that a mosquito will become infected with strain i during its life is 

(Smith 2004):9 

NNn INF

i

INF

i /=

(3.3a) 
INF

i

mos

INF

iINF

i
nb

nb

1

1

ρδ
ρ

π
+

=   

A latency period of τ days is required before the virus forms sporozoites in the salivary glands, 

making it possible for the mosquito to transmit the infection; the likelihood that the mosquito will become 

infectious to humans during its life is therefore .  Since a mosquito lives another 1/δmos days, 

the expected number of infectious bites during its life is . The number of infectious 

bites received by each human per day, or the transmission rate, is  

INF

i

mos

e πτδ−

mosINF

i

mos

e δρπτδ /−

                                                 
8 Even infected people who are not symptomatic face an elevated risk of mortality because the presence of parasites 
in the bloodstream increases susceptibility to other diseases (Greenwood, 1987).  
 
9 We do not consider the possibility of superinfection when a mosquito or human becomes coinfected by a second 

strain; its effects on δINF, ri, and  are not well understood, although they appear to be small (Koella and Antia, 

2003). 

SP

iρ
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(3.3b)  2bhi =
mosINF

i

mos

me δρπτδ /−

where m is the number of (female) mosquitoes that emerge per human per day, and b2 is the probability 

that a bite from an infectious mosquito will infect a human.10 Since the transmission rate rises with the 

infection rate, resistant strains evolve exponentially, or conversely, drug effectiveness remains close to 

unity for a while, then declines sharply before stabilizing above zero (because of spontaneous recovery 

from resistant strains, which tends to prevent that strain from becoming 100 percent of all infections).  

    

3.2. Economic Model 

3.2.1. Household utility and drug demand. We adopt the following nested, constant elasticity of 

substitution (CES) utility function defined over a period of duration t , where θ  is the daily discount rate: 

(3.4a) dtnExeU
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 (3.4d) 
INFINF

CC nne /1−= , 
INFINF

C

INF

MM nnne /)(1 +−= ,  
INFINF

C

INF

PP nnne /)(1 +−=  

INF

in  is the probability that the agent will be infected with strain i on day t, where 
INF

ii

INF nn Σ= . 

In (3.4a) the term in square parentheses is daily utility from general consumption x and a 

composite good of effective drug treatments E; σu is the substitution elasticity between x and E, which 

governs the responsiveness of aggregate drug use to the ACT subsidy.  is the monetized cost 

per day of infection (averaged over symptomatic and nonsymptomatic cases); in (3.4b) it is equal to the 

daily morbidity cost k plus the product of the mortality rate and the value of life v. 

x

COST u/α

In (3.4c), E is a CES function over the infections treated by the three drugs, weighted by their 

respective effectiveness. The substitution elasticity σa governs the crowding-out effect of increased ACT 

use on the monotherapies, while αC, αM and αP are distribution parameters chosen to imply an initial drug 

                                                 
10 hi is related to the “entomological inoculation rate” (EIR), a familiar concept in epidemiological literature, as 
follows:  hi = b2EIR. That is, the EIR is the rate at which humans are bitten by mosquitoes potentially carrying a 
parasite, while hi is the rate at which humans actually become infected.  
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mix and overall coverage rate. Finally, in (3.4d) drug effectiveness is the fraction of the infected 

population that is not resistant to that drug. 

From duality theory, we can obtain the demand functions (see Appendix): 

(3.5a) 
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where i, j = M, P, C ; pC is the net of subsidy price of ACT; and pE is the unit cost of the composite. 

Partially differentiating the demand for ACT with respect to pC yields: 

(3.6a) 
jjj

CC
EE

cond

CC

C

C

C

C
CC

ap

ap

a

p

p

a

Σ
+=

∂
∂

= ηηη  

(3.6b)  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Σ
+−= −

−

a

a

jjjj

CCC
a

cond

CC
ep

ep
σ

σ

α
α

ση
1

1

))/((

))/((
1 , 

u

u

E

Eu
EE

p

p
σ

σσ
η −

−

+
+−

=
1

1

1

)(
 

Equation (3.6a) decomposes the own-price elasticity for ACT, CCη <0, into (a) the conditional elasticity 

holding E fixed, which reflects inter-drug substitution; and (b) the own price elasticity for drugs as a 

whole, 

cond

CCη

EEη , times the share of spending on ACT in total drug spending.  

 

3.3. Model Solution 

An initial steady state with no drug use and only wild-type infections is obtained. We then solve 

the model with drug use and a given ACT subsidy (fixed over the planning period) using (3.2)−(3.5) and 

day-one population subgroups given by the no-drug steady state; our planning horizon is 20 years, so t = 

20 × 365 periods. 

 To interpret welfare effects, we define the marginal cost (MC) and marginal external benefit 

(MEB) from increasing the subsidy as follows: 
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MC is analogous to the (gross of externality) welfare effect in (2.4), discounted over the planning period. 

MEB is the marginal net reduction in infections, , discounted over the planning horizon, and dsdN INF

NET /−
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multiplied by the daily illness cost, where  is the overall reduction in infections, net of those 

due to increased drug treatment that are internal to drug users.  MEB > 0 to the extent that the subsidy 

reduces the instantaneous transmission rate and increases average future drug effectiveness; the numerical 

model is unable to separately decompose the transmission and resistance externalities because of 

interaction between them.11  

dsdN INF

NET /−

 

3.4. Parameter Values 

We now discuss the baseline parameters and alternative values for transmission rates, resistance 

evolution, and drug-demand elasticities that are used for our main results; other parameters are varied in 

additional sensitivity analyses. 

 

Entomological parameters. Aside from mosquito density, we take standard values for these parameters 

from the literature (Anderson and May, 1991).12 We assume the mosquito mortality rate  = 1/10; the 

daily biting rate ρ = 0.3; the transmission efficiency from infected humans to mosquitoes, and vice versa, 

b1 = 0.5 and b2 = 0.8; and an incubation period of parasites in the mosquito of τ  = 10 days. Mosquito 

density varies dramatically across sub-Saharan Africa with climate, the extent of urbanization and 

irrigation, and other factors; we consider values for m from 0.01 to 0.73, which imply an initial steady-

state transmission rate for the wild-type infection of hW(0) = 0.004 to 0.300, or about 1.5 to 110 infectious 

bites per year, this is consistent with evidence noted below.13  

mosδ

 

Spontaneous recovery rates. Estimates of the time required to fully clear all infectious malaria parasites 

from the blood without treatment range from approximately 50 to several hundred days (Dietz et al., 

1974; Gu et al., 2003; Sama et al., 2004);14 for the baseline, we assume  = b2/165 from Smith et al. 

(2005). Based on previous data (Hayward et al., 2005) and evidence in field studies (e.g., Hastings and 

Donnelly, 2005; Koella, 1998), we assume spontaneous recovery rates are 20 percent and 45 percent 

SP

Wρ

                                                 
11 That is, greater resistance leads to lower drug effectiveness, which lowers the transmission externality benefits 
from future drug use. 
 
12 These parameters have been obtained in various ways; for example, by analyzing samples of mosquitoes trapped 
in homes or using human volunteers as baits. 
 
13 Even higher biting rates are possible (Hay et al. 2005), though our results below converge as the biting rate 
approaches 100 per year.   
14 Measurement is confounded by the possibility of reinfection from additional bites prior to recovery and the 
possible persistence of parasites in the bloodstream at undetectable levels (e.g., Gu et al., 2003). 
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faster for strains resistant to monotherapies and ACT, respectively, 1.2 , 

1.45 .  

SP

Mρ == SP

Pρ
SP

Wρ

=SP

Cρ
SP

Wρ

 

Rate of immunity loss. Although a complete understanding of how immunity to malaria arises and persists 

following spontaneous recovery is still lacking, it is widely accepted that further infectious bites prolong 

immunity (e.g., Anderson and May, 1991; Aron and May, 1982; Hastings, 1997). We adopt the following, 

standard relation from the literature (e.g., Aron and May, 1982): , where T is immunity 

duration without additional biting, assumed to be 100 days. At low transmission rates, immunity lasts 

about 200 to 300 days, but at very high transmission rates it can last for years.  

)1/( −= hTehγ

 

Mortality rates. Roll Back Malaria et al. (2005, Annex 1) and the United Nations Statistics Division 

(2006) estimate that malaria kills between 0.001 and 0.300 percent of those who are infected each year; 

we take a value for our baseline of  = 0.0015/365. Based on the same sources, we assume an average 

life expectancy of 45 years, or = 1/(45×365).  

INFδ
Nδ

 

Steady state with no drug use. Figure 2 plots the initial steady-state population subgroups with no drug 

use against the transmission rate (given other baseline parameters). The proportion of the population that 

is either infected (whether symptomatic or not) or immune on a given day, termed the “parasite rate,” 

varies from near 0 to 96 percent as the transmission rate increases.15 The infected class peaks at 58 

percent and then declines beyond a rate of 11 infectious bites per year, because a higher biting rate lowers 

γ and increases the size of the immune population at the expense of the infected population (Snow and 

Marsh, 2002). We illustrate “low,” “baseline,” “high,” and “extreme” scenarios corresponding to about 

1.5, 7.5, 15, and 110 infectious bites per year, respectively.  Initial infection rates for these scenarios are 

0.30, 0.57, 0.57, and 0.06, respectively, the latter two rates being beyond the peak of the infection curve. 

 

Initial drug use and treatment recovery rate. Only a small fraction of those with infections are 

symptomatic.  Assuming that a wild-type infection is symptomatic for 5 days (Chima et al., 2003) and 

multiplying by , 5 of 200 infected individuals are symptomatic on a given day.  Further, only a 
SP

Wρ

                                                 
15 This broad range is consistent with available evidence. For example, Mbogo et al. (2003) estimated parasite rates 
of 38 to 83 percent in different regions with different rainfall levels in Eastern Kenya; Beier et al. (1999) found rates 
of 0 to 90 percent across 31 sites in Africa; Hay et al. (2005) found rates of 0 to almost 100 percent depending on the 
terrain in Africa; Wang et al. (2006) estimated rates of 26 percent among health center patients in urban Ivory Coast; 
and Mendis et al. (2000) found rates of 33 to 63 percent in rural Mozambique.  
 

 12



Resources for the Future  Laxminarayan et al. 

fraction of these individuals take drugs because of their cost or unavailability (others use “self therapy”). 

Based on previous data (Branch et al., 2005) we assume that, in the absence of an ACT subsidy, 20 

percent of symptomatic individuals receive antimalarial treatment.  Therefore, infected individuals are 

initially treated once every 200 days or, normalizing ρTR = 1 (individuals stop being infectious after one 

treatment day), a(0) = 0.005. On the basis of conversations with experts at Roll Back Malaria, we assume 

that 4, 15 and 1 percent of symptomatic infections are treated with AMT, PMT, and ACT, respectively; 

all drugs initially have 100 percent effectiveness. 

 

Resistance evolution. The probability that spontaneous resistance will emerge to a new drug is very 

difficult to gauge ex ante.16 For example, despite hundreds of millions of treatments, spontaneous 

resistance to chloroquine apparently occurred only a few times (Wootton et al., 2002), suggesting an r 

value of approximately 10-9 for that drug, whereas resistance may arise in as many as one of every three 

patients taking atovaquone monotherapy (White and Pongtavornpinyo 2003). It is believed that the 

likelihood of spontaneous resistance to artemisinin is much lower than for other antimalarials, since it 

kills parasites much faster and is quickly eliminated from the body (White 1998). We illustrate low, 

baseline, and high values for rP of 10-8, 10-5 and 10-3 and for rM of 10-10, 10-8 and 10-5, respectively; 

resistance evolution for ACT is the product of the rate for its constituent drugs, rC = rPrM (White, 1999; 

White and Pongtavornpinyo, 2003; White, 2004).17  

 

Drug prices. Based on WHO (2003, 25) and Médecins Sans Frontières (2003, 17, 20), we set producer 

prices at $0.30, $1.00, and $1.30 for PMT, AMT, and ACT, respectively. In practice, the producer price 

of ACT may decline in the future if synthetic drugs are developed; we consider other assumptions in the 

sensitivity analysis. 

 

Demand response parameters. No econometric evidence on drug-demand elasticities is available for sub-

Saharan Africa; we therefore consider a plausible range of possibilities. The greater σa becomes, the 

greater the effect of ACT subsidies on crowding out monotherapies; we calibrate σa such that demand for 

                                                 
16 Malaria parasites are highly complex and have an extremely high rate of genetic variability (Kidgell et al. 2006).  
In most malarial infections, resistant mutants represent a tiny fraction of all parasites, and they rarely become 
dominant unless the host receives drug treatment.   
 
17 In practice, individuals may stop drug consumption without completing the treatment course, or mistakenly take 
antimalarials for a non-malaria infection. In either case, the emergence of resistant parasites could be increased, 

though the evidence on this is weak (White and Pongtavornpinyo 2003).  In any case, these possibilities are 
implicitly taken into account in our choice of the ris, since they are crudely based on prior experience with resistance 
evolution.  
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ACT would be 40, 70, and 100 percent of that for PMT (prior to resistance evolution) if the consumer 

price of ACT is lowered to that of PMT.18 The greater σu becomes, the greater the effect of subsidies on 

increasing overall drug use and reducing infection transmission; we calibrate σu to imply that total drug 

coverage would rise from 20 percent to 27.5, 35, or 45 percent, respectively (prior to resistance evolution) 

if the price of ACT were half that for PMT. 19 Combining these cases leads to a low elasticity scenario 

where σu = 0.72, σa = 1.22 (ηCC = –1.45, ηEE = –0.49); a baseline scenario with σu = 0.85, σa = 1.62 (ηCC 

= –1.93, ηEE = –0.85); and a high scenario with σu = 1.05, σa = 1.85 (ηCC = –2.23, ηEE = –1.05).   

Figure 3 shows how drug demand responds to the ACT subsidy in the baseline case (prior to 

resistance evolution). The subsidy initially increases ACT use at the expense of other drugs; only beyond 

a subsidy of approximately $0.80 (when the price of ACT approaches that of PMT) does overall drug use 

start to noticeably increase. We do not consider subsidies much in excess of $1, since demand becomes 

unstable under CES preferences, as prices tend to zero (or s tends to $1.30).   

 

Cost of illness. Direct morbidity costs (e.g., drugs, clinic and physician costs, access costs) are estimated 

at around $0.40 to $4.00 per episode of symptomatic malaria in sub-Saharan Africa, or $0.08 to $0.80 per 

day of illness, while indirect costs (time lost from incapacitation or caring for sick children) are estimated 

at around $0.15 to $4.50 per day of symptomatic illness (Chima et al. 2003). We assume morbidity costs 

are $2.5 per day (or $12.5 per episode); multiplying by the fraction of symptomatic infections gives k = 

6.3 cents. To value mortality effects, we assume a value of life v = $50,000, based on (and updating) 

extrapolations across different countries (Miller, 2000, Table 5). Combining morbidity and mortality 

components gives the cost per day of illness  = 26.8 cents. x

COST uu /

 

Discount rate and altruism parameter. We start with an annual discount rate of 3 percent (θ = 0.03/365), 

which is commonly used to evaluate health policy interventions in developing countries (Drummond et al. 

1997). For the benchmark case we assume no altruistic benefits to donors (i.e., µ = 0 or the cost of 

financing $1 of subsidy is $1); this assumption is relaxed later. 

 

                                                 
18 If anything, demand for ACT would likely be lower than for PMT at equal prices because of consumer 
unfamiliarity with ACT, and a less well-developed distribution network for ACT.  
 
19 We cannot consider values for σu much below these cases because agents would compensate for a general decline 
in drug effectiveness by consuming more drugs, which causes instability (in practice, individuals and institutions 
would likely rely more on self-therapy and other remedies as drug effectiveness falls). 
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4. Simulation Results 

 We now discuss drug effectiveness, infection rates, and welfare effects of ACT subsidies under 

alternative scenarios for transmission rates, drug-demand responses, resistance evolution, and the cost of 

illness. We then provide additional sensitivity analyses, including the implications of altruistic donors.  

 

4.1. Drug Effectiveness and Infection Rates 

 Figure 4(a) shows the effectiveness of individual drugs over time and the average drug 

effectiveness (weighted by drug share) under baseline parameters and drug use (with no ACT subsidy). 

For each drug, effectiveness is initially unity then declines sharply as resistance evolves exponentially; 

drug use also falls at this point (Boni and Feldman, 2005).  This decline occurs after about 4 years for 

PMT, reflecting its relatively high use and resistance evolution rate, and after about 12 and 14 years for 

AMT and ACT, respectively. Long-run effectiveness for PMT is lowest, at 0.12, reflecting its higher use 

and the lower spontaneous recovery rate from the PMT-resistant strain, while effectiveness for ACT and 

AMT stabilizes at about 0.45 and 0.35, respectively. Average drug effectiveness drops to about 0.6 when 

PMT fails, and then to about 0.25 when AMT and ACT fail.  

Figure 4(b) shows average drug effectiveness for other drug use scenarios (and baseline 

parameters): one in which all drug use is scaled up in proportion so that initial total coverage for 

symptomatic infections is 50 percent, and another in which total initial drug coverage stays at 20 percent 

but ACT is half of drug use (monotherapies are scaled back in equal proportion). With more intensive 

overall drug use, all drugs fail much sooner than in the baseline case, and average long-run drug 

effectiveness is much lower. With a greater ACT share, PMT fails later than in the baseline, while ACT 

and AMT fail a little quicker; average drug effectiveness is greater than in the baseline for the first 12 

years, though dips below it thereafter.  

In Figure 4(c) we vary the initial transmission rate given baseline parameters and drug use. Here 

the infected population and drug use are smaller than in the baseline case for the low and extreme 

transmission scenarios (see above), hence drug effectiveness lasts longer.  There is little difference in 

effectiveness between the baseline and high transmission rate case, given that the initial infection rate and 

drug use are about the same. Finally, Figure 4(d) shows that the average drug effectiveness falls 

somewhat slower or faster with the low or high rates of resistance evolution, respectively.    

 Figure 5 illustrates the reduction in infection rate over time (relative to the steady state with no 

drug use) for baseline parameters. With baseline drug demand, the infection rate is initially reduced by 

about 0.08 (the infected population share is about 0.48 compared with 0.56 in the no-drug steady state).  

This difference falls to 0.04 when PMT fails, though it increases slightly when ACT fails as people 

recover faster spontaneously from ACT-resistant strains. If initial total drug coverage is scaled up to 50 
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percent, the reduction in infections over time is more substantial, while if ACT accounts for half of an 

initial 20 percent drug coverage, the reduction in infections is also higher (after three years) because of 

the more intensive use of the most effective drug. Qualitatively similar results (not shown in the figure) 

apply at different transmission rates.20  

 

4.2. Welfare Effects of ACT Subsidies 

 In Figure 6 we plot the marginal social cost and marginal external benefit from increasing the 

subsidy (discounted over 20 years), according to (3.7), in dollars per capita and under baseline 

parameters. The marginal cost is increasing because the difference between the marginal supply cost and 

the marginal private benefit to ACT consumers is widening, and successive incremental increases in the 

subsidy cause progressively higher increases in drug demand, given the convex demand curve. The 

marginal external benefit is also rising because the marginal impact on reducing infection transmission 

and/or resistance evolution is rising (again because of convex demand) and exceeds the marginal cost up 

to a subsidy of $1.18. Integrating between the MEB and MC curves, the total (discounted) welfare gain 

from a $1 subsidy is $25 per capita; the benefit-cost ratio is about 6:1. 

 Figure 7(a) show how total welfare gains from a $1 subsidy vary with the initial transmission 

rate and drug-demand elasticities (given other baseline parameters). Welfare gains initially rise with the 

transmission rate (and drug use) but then decline beyond about 1.5 infectious bites per year and become 

(slightly) negative beyond about 60 to 80 infectious bites per year.  At high biting rates, externality 

benefits from both more drug use and longer drug effectiveness are greatly diminished, since treated 

individuals are quickly reinfected. Figure 7(b) shows how welfare gains from the $1 subsidy vary with the 

cost of illness (for different drug-demand elasticities and baseline values for other parameters); welfare 

gains are still positive at $3 to $8, even if the cost of illness is one-third that assumed in our baseline. In 

these two panels, the benefit-cost ratio is at least 2:1 when infectious bites per year are below about 45 

and the daily cost of illness is above about $0.10. 

Finally, Table 1 shows how welfare gains vary with resistance evolution rates for AMT and PMT 

(and therefore also ACT) for selected transmission and demand response scenarios.  We consider cases 

where rates are scaled up and down for AMT and PMT simultaneously and one at a time (given the 

baseline rate for the other drug). The main point here is that welfare gains are only moderately affected so 

even though resistance evolution rates are highly uncertain, the efficiency case for ACT subsidies is still 

robust. (These results do not necessarily imply that resistance is unimportant because the effect is 

                                                 
20 Even for transmission rates beyond the peak of the infection curve in Figure 2, drug use still reduces the infection 
rate, though the effect is small.  
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confounded in Table 1; faster resistance strengthens efficiency gains from crowding out monotherapies 

but lowers (future) efficiency gains from reduced infection transmission as drugs fail faster). 

  

4.3. Further Sensitivity Analysis 

 The first part of Table 2 indicates how welfare effects from the $1 ACT subsidy increase as we 

allow for altruistic benefits to donors; these benefits reduce the net cost of financing the subsidy. Aside 

from the low transmission rate case, relative welfare gains rise rapidly.  For example, if altruistic benefits 

are $0.30 per $1 of subsidy outlays, welfare gains are three to four times as high as they are with no 

altruism in the baseline and high transmission rate scenarios. Varying the producer price of ACT (keeping 

the subsidized consumer price at $0.30), spontaneous recovery rates and rates of immunity loss generally 

have only a modest impact on welfare gains.  

  

5. Conclusion 

 Our results suggest that large subsidies to lower the price of artemisinin combination treatments 

(ACTs) so that they are comparable to prices of alternative antimalarial drugs in sub-Saharan Africa are 

warranted on externality grounds across many scenarios for epidemiological and economic parameters. 

This outcome is due to large efficiency gains from the effect of the subsidy on deterring use of alternative 

drugs for which resistance evolves faster, and by lowering infection transmission rates through expanding 

overall drug coverage. However, at extremely high infection transmission rates (in excess of about 60 to 

80 infectious bites per year), subsidies may not be efficient because recovering individuals quickly 

become reinfected and thus there is little impact on reducing the size of the infected population. 

 This analysis might be extended in future work to study a broader range of malarial policy 

interventions, such as subsidies for insecticide-treated bed nets and indoor residual spraying. It would be 

especially useful to analyze, for a given total budget provided by external donors, the optimal balance 

between spending on such prevention measures, and spending on drug treatments, and to what extent this 

trade-off might critically hinge on the epidemiological and economic parameters discussed above, 

particularly the infection transmission rate. More generally, the type of framework developed here might 

be extended to analyze policy interventions in the context of other infectious diseases, such as HIV/AIDS 

and tuberculosis.  
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Appendix 

 
Derivation of Equation (2.4) 
 The welfare effect of an incremental increase in s is obtained by first solving the household 
optimization problem to obtain the indirect utility function and then totally differentiating the indirect 
utility function with respect to s. 
 
(i) Household optimization. Using (2.1) and (2.2) this is given by: 
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where V{.} is the indirect utility function. Households choose x, AC and AM to maximize utility subject to 
the budget constraint, taking resistance or drug effectiveness, infection transmission, and government 
policy parameters as given. From the resulting first-order conditions and budget constraint we obtain the 

implicit demand functions { }INF

MC neesy ,,, , where y = aC, aM, x and substituting them into the utility 

function u{.} yields the indirect utility function V{.} defined in (A1). 
 
 Partially differentiating V{.} gives: 
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(ii) Welfare effect of increasing s. Totally differentiating the indirect utility function with respect to s 
gives: 
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From totally differentiating expressions in (2.1b) and (2.1c): 
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Substituting (A4)-(A5) in (A3), subtracting the marginal cost of subsidy finance to donors, 

)/)(1(/ dssdAAdsdG CC +−= µ , and collecting terms in  and  gives (2.4). dsdAC / dsdAC /

 
Deriving Equation (3.5) 

Using duality theory, the first step in the household optimization is to choose consumption of 
individual drugs to minimize spending for a given amount of the composite good E. That is, households 
solve 
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where C{.} denotes the cost function. Following standard derivations for CES functions (e.g., Varian 
1984, Ch. 2), the cost function is: 

(A8) { } )/())/(())/(())/(({.} 1

1
111 INF

EPPPCCCMMM nEepepepC a
aaa αααα σσσσ −−−− ++=  

 
Differentiating the cost function with respect to individual drug prices gives the conditional demand 
functions in (3.5a). The price of the composite good in (3.5a) is simply total spending on the composite 
C{.} divided by quantity of the composite E.  
 
 The second step of the household optimization is to choose x and E to maximize the upper nest of 
the utility function subject to the budget constraint. From the individual’s perspective, decisions taken at 
different points in time are independent, so we can solve the instantaneous maximization problem:  
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Again, from standard derivations (Varian 1984, Ch. 2), the indirect utility function is given by: 

(A10) 
INFCOST

E npINCV uu ασσ −+⋅= −− 1

1

1 }1{  

The demand functions in (3.5b) are obtained by applying Roy’s identity to (A10). 
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Figure 1. Welfare Effects from Increasing the ACT Subsidy 
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Figure 2. Population Subgroups in Initial Steady State with No Drug Use 
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Figure 3. Initial Drug Coverage at Different Subsidy Levels 
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Figure 4: Drug Effectiveness over Time 
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Figure 5: Impact of Drug Use on Reducing Infection Rate 
(for baseline parameter values) 
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Figure 6: Marginal Cost and External Benefit from ACT Subsidy 
(for baseline parameter values) 
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Figure 7: Welfare Gain from $1 Subsidy under Alternative Scenarios 
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Demand responses low high low baseline high low high

Baseline case 47.3 99.3 15.4 26.8 32.7 9.6 21.1

All resistance rates

high value 34.0 74.6 16.4 28.3 32.3 10.5 21.4

low value 41.7 103.2 14.3 23.8 31.3 8.8 19.6

AMT resistance rate

high value 33.8 75.2 16.2 27.4 32.1 10.4 21.0

low value 50.6 116.2 14.1 23.6 31.2 8.2 18.7

PMT resistance rate

high value 47.3 99.3 15.4 26.6 32.7 9.6 21.1

low value 33.6 74.2 13.0 21.4 29.3 8.3 18.8

Table 1. Welfare Gain from Reducing ACT Price to $0.30: Alternative Resistance Scenarios

(Discounted Welfare Gain, $ per capita)

initial transmission rate

low baseline high
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low baseline high extreme

Baseline case 73.8 26.8 17.4 -0.9

Altruism parameter increased from 0 to

0.1 77.8 44.6 35.9 1.2

0.3 85.9 80.1 72.9 5.3

0.5 94.0 115.6 109.9 9.4

Annual discount rate increased from 3% to 7% 49.6 17.7 10.6 -0.6

Producer price of ACT

lowered to $0.90 69.4 30.3 20.8 -0.7

raised to $1.70 78.8 25.0 15.4 -1.0

Spontaneous recovery rates

increased 25% 59.2 24.1 15.3 -1.1

decreased 50% 71.5 25.7 16.7 -0.6

Initial rate of immunity loss

increased 50% 59.5 21.7 13.3 -0.5

decreased 50% 80.3 28.0 16.7 -1.0

Table 2. Welfare Gain from Reducing ACT Price to $0.30: Further Sensitivity Analysis

initial transmission rate

(Discounted Welfare Gain, $ per capita)
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