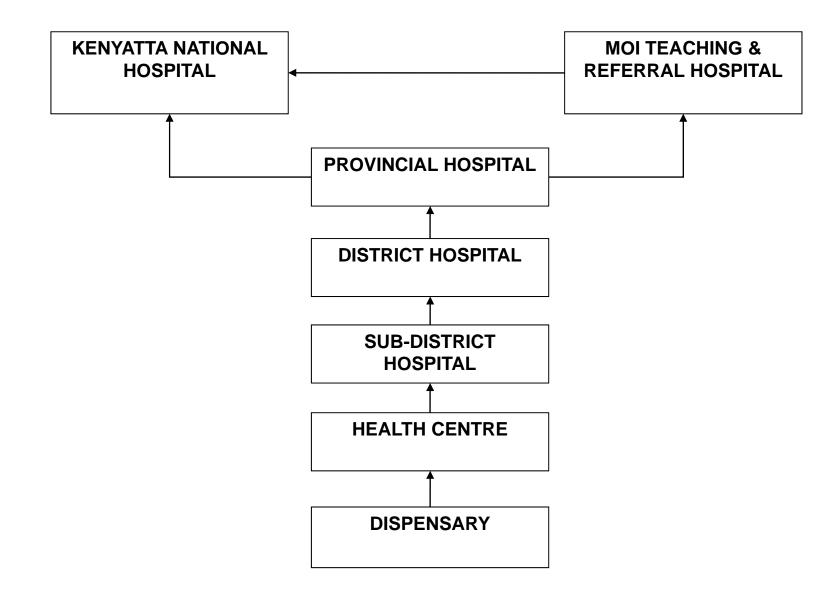
ANTIBIOTIC RESISTANCE IN WESTERN KENYA

0

Global Antibiotic Resistance Partnership

Rose Kakai



Maseno University School of Public Health and Community Development P.O. Box 333 Maseno, Kenya

INTRODUCTION

- In many developing countries, resistance to common antibiotics is on the rise
- In W. Kenya, bacterial infections ranked among top 10 causes of morbidity
- The burden of disease lies in rural communities who mainly access lower level health facilities
- District hospitals are the lowest level at which antibiotic susceptibility testing is done (Fig. I).

Fig. 1: Referral system of public health facilities in Kenya

Problem statement

 Despite high prevalence of bacterial infections in western Kenya, the problem of antimicrobial resistance has gone largely unrecognized

Objective

 To identify antibiotic susceptibility patterns of the clinical isolates

Justification

 To inform policy in an effort to control the spread of antibiotic resistance

METHODS

Site:

- Five hospitals located in W. Kenya (Fig. 2)
- These included Bungoma, Busia, Kapsabet, Kisumu and Webuye District Hospitals.

Fig. 2: Map of Kenya showing study sites

7

Methods

Design:

Hospital-based cross sectional

Sampling procedure:

- Site selected by purposive sampling.
- All isolates tested for antibiotic susceptibility from Jan. - June 2009 were included
 Data collection:
- Sec data from lab. records perused for bact isolates and antibiotic susceptibilities
- All susceptibilities done using disk diffusion

8

Methods

Data management and statistical analysis:

 Data was entered into data collection sheet and later into SPSS (v. 14), analyzed using descriptive statistics

Ethical considerations:

 Permission to collect the data was sought from the Medical superintendents of the respective hospitals.

9

RESULTS

- Total of 130 specimens, highest being from Kisumu and most frequent specimen was pus
- Many isolates were not tested. Reasons included high cost

Table I: Freq. distribution of the specimens by hospital

Specimen Number (%) of specimens from the District Hosp								
Ksm	Bgm	Busia	Wby	Kaps	Total			
1	6	27	5	2	41(31.5)			
30	1	0	0	0	31(23.8)			
10	9	3	3	5	30(23.1)			
1	10	1	4	2	18(13.8)			
0	6	0	0	0	6(4.6)			
1	2	0	0	0	3(2.3)			
0	1	0	0	0	1(0.8)			
43(33.1)	35(26.9)	31(23.8)	12(9.2)	9(6.9)	130			
	Ksm 1 30 10 10 1 0 1 0 1 0 1 0	Ksm Bgm 1 6 30 1 10 9 1 10 0 6 1 2 0 1	Ksm Bgm Busia 1 6 27 30 1 0 10 9 3 1 10 1 0 6 0 1 2 0 0 1 0	KsmBgmBusiaWby16275301001093311014060012000100	KsmBgmBusiaWbyKaps162752301000109335110142060001200011000			

Table 2

- Most common pathogens isolated were Staphylococcus (38.5%) and Escherichia coli (21.5%).
- All isolates were resistant to penicillin
- Only 20 (18.9%) isolates were resistant to gentamicin
- Isolates that displayed 100% sensitivity were only for few specimens

Table I: Antibiotic resistant pattern of the isolates

Drug	Staph	Strep	Salm	Shig	E. coli	N. gon	V.chol	Kleb	Pseud	Proteus	Citro	Gram neg rod	Total
Pen	8(100)	5(100)	3(100)		5(100)			1(100)		2(100)	1(100)		25(100)
Mino	<mark>6(</mark> 46.2)	1(20)	2(66.7)	1(100)	5(50)			0/1		0/2	0/1		15(41.7)
Ery	<mark>7(</mark> 53.8)	2(40)	3(100)	1(100)	8(80)			0/1		1(50)	1(100)		23(63.9)
Meth	12(92.3	5(100)	3(100)		6(75)			1(100)		3(100)	3(100)		33(91.7)
Cotri	36(81.8)	8(88.9)	5(71.4)	4(80)	22(81.5)	2(100)	5(100)	6(85.7)	2(100)	2(40)	3(100)	4(80)	99(81.8)
Chlor	9(69.2)	2(33.3)	3(100)	1(100)	1(100)			0/1		1(50)	1(100)	2(66.7)	20(50)
Amp	28(70)	7(70)	3(42.9)	4(80)	21(77.8)	0/2	4(80)	8(100)	2(100)	4(80)	3(100)	5(100)	89(74.8)
Linco	6(75)	2(66.7)	1(100)		4(100)			1(100)					14(82.4)
Tet	12(70.6	2(100)	2(50)	5(100)	8(72.7)	2(100)	1(100)	1(50)	1(100)		4(100)		38(77.6)
Nitro	17(56.7	3(100)	4(100)	3(75)	6(46.2)	0/2	4(100)	1(14.3)	2(100)	2(100)		0/1	42(58.3)
NA	23(63.9	2(66.7)	1(50)	1(25)	14(60.9)	2(100)	2(40)	3(42.9)	2(100)	1(33.3)	1(50)	0/1	52(57.8)
Strep	<mark>5(</mark> 55.6)	,	1(25)	2(50)	2(33.3)	0/2	0/1	1(50)	0/1				11(37.9)
	<mark>6(</mark> 85.7)		4(100)	4(100)	3(100)	2(100)	1(100)	1(50)	1(100)				22(91.7)
Gent		1(25)	0/4	1(20)	9(37.5)	0/2	1(20)	1(14.3)	0/2	0/3	1(50)	2(40)	20(18.9)
Cipro	5(71.4)				1(100)		- 4						6(75)
Aug	· /	2(40)		1(100)	17(94.4)		3(75)	3(60)	1(100)	3(100)	2(66.7)	5(100)	58(77.3)
Norf	6(20)	1(100)			6(54.5)		0/3	3(60)	0/1	1(50)	1(50)	1(100)	9(33.9)
Kana	<mark>6(</mark> 85.7)	0/1		1(100)	6(100)							0/4	13(68.4)
Cefu	16(52.2)	1(50)		1(100)	11(68.8)		0/3	1(20)	0/1	1(50)	0/2	1(25)	32(49.2)
Total													

Tabe 3

 Most of the resistant isolates were from Kapsabet

Table 3: Proportion of antibiotic resistant strains by the hospital

Drug	Number (%) of resistant isc	Total				
Dest	Bungoma	Busia	Webuye	Kisumu	Kapsabet	
Pen	10(100)	4(100)	1(100)			25 (100)
Mino	2(20))	3(75)	2(66.7)	1(10)	7(77.8)	15 (41.7)
Ery	6(60)	4(80)	1(50)	4(40)	8(88.9)	23 (63.9)
Meth	9(90)	4(100)	1(50)	19(95)		33 (91.7)
Cotri	25(73.5)	22(81.5)	8(100)	35(81.5)	9(100)	99 (81.8)
Chlor	5(45.5)	5(50)		5(50)	5(55.6)	20 (50)
Amp	21(61.8)	21(84)	8(100)	30(69.8)	9(100)	89 (74.8)
Linco	8(80)	4(100)	0/1	2(100)		14 (82.4)
Tet	14(63.3)	10(100)	5(62.5)		9(100)	38 (77.6)
Nitro	17(73.9)	9(45)	2(33.3)	14(60.9)		42 (58.3)
NA	16(76.2)	10(52.6)	5(62.5)	13(39.4)	8(89.9)	52 (57.8)
Strep	9(42.9)		2(25)			11 (37.9)
Sulph	19(90.5)		3(100)			22 (91.7)
Gent	5(21.7)	4(13.3)	0/11	6(18.2)	5(55.6)	20 (18.9)
Cipro		6(75)				6 (75)
Aug	0/4	24(89.9)	1(100)	24(70.6)	9(100)	58 (77.3)
Norf	4(16.7)		1(100)	14(45.2)		9 (33.9)
Kana	4(40)				9(100)	13 (68.4)
Cefu	10(41.7)		0/1	13(41.9)	9(100)	32 (49.2)

Table 4

CSF isolate was resistant to all the drugs tested

Table 4: Proportion of antibiotic resistant strains by specimen

Drug	Number (%	Number (%) of resistant isolates in the following specimens:									
	Pus	Urine	Stool	HVS	Blood	CSF	Urethral	Total			
							swab				
Pen	6(100)	5(100)	3(100)		3(100)	1(100)	7(100)	25(100)			
Mino	5(55.6)	2(25)	6(75)		0/3	1(100)	1(14.3)	15(41.7)			
Ery	6(66.7)	5(62.5)	7(87.5)		1(33.3)	1(100)	3(42.9)	23(63.9)			
Meth	6(85.7)	5(100)	4(100)	1(100)	2(66.7)	1(100)	13(92.9)	33(91.7)			
Cotri	28(82.4)	14(82.4)	26(89.7)	2(66.7)	5(83.3)	1(100)	23(74.2)	99(81.8)			
Chlor	7(58.3)	5(71.4)	3(30)		0/3	1(100)	4(57.1)	20(50)			
Amp	25(80.6)	12(70.6)	26(86.7)	1(33.3)	5(83.3)	1(100)	19(61.3)	89(74.8)			
Linco	4(66.7	3(75)	2(100)		3(100)	1(100)	1(100)	14(82.4)			
Tet	12(85.7)	8(66.7)	13(76.5)	2(100)	2(66.7)		1(100)	38(77.6)			
Nitro	12(50)	6(75)	12(66.7)	0/2	2(66.7)		10(58.8)	42(58.3)			
NA	17(65.4)	10(90.9)	11(47.8)	2(66.7)	2(66.7)		10(41.7)	52(57.8)			
Strep	1(25)	5(62.5)	3(23.7)	0/2	2(66.7)		0/1	11(37.9)			
Sulph	2(100)	6(85.7)	9(100)	2(100)	2(66.7)		1(100	22(91.7)			
Gent	4(11.4)	1(7.1)	9(33.3)	0/3	2(66.7)		4(16.7)	20(18.9)			
Cipro	5(71.4)	1(100)						6(75)			
Aug	22(75.9)	4(80)	15(93.8)	1(100)			16(66.7)	58(77.3)			
Norf	4(16.7)	1(100)	2(28.6)	1(100)			11(47.8)	9(33.9)			
Kana	5(55.6)	2(66.7)	6(85.7)					13(68.4)			
Cef	11(45.8)	3(75)	6(46.2)	1(100)			11(47.8)	32(49.2)			

CONCLUSION

- There was R to several antibiotics
- All isolates tested were R to penicillin
- Most isolates were S to gentamicin
- The number of specimens processed in some hospitals was very low
- Cost was cited as a prohibiting factor to antibiotic susceptibility testing

RECOMMENDATIONS

- There is need for further investigation to establish a data base to ascertain the antibiotic susceptibility pattern and MICs in the region
- Authorities should consider strengthening capacity for antibiotic susceptibility testing on routine basis as a priority

ACKNOWLEDGEMENT

- Global antibiotic resistance partnership (GARP)
- Medical superintendents.
- Staff in the clinical and laboratory departments

Thank you all