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ABSTRACT

In recent decades, penicillin-resistant pneumococci (PRP) have emerged and spread rapidly between and

within countries over the world. In this study we developed an iterative artificial neural network (ANN) model

to describe and predict the spread of PRP in space and time as a function of antibiotic consumption and a

number of different confounders. Retrospective data from 1997 to 2000 on an international epidemic PRP

clone (serotype 9V) and antibiotic consumption data from Southern Sweden were used to train the ANN mod-

els and data from 2001 to 2003 for evaluation of the model predictions. Five different ANN models were

trained, each with independent topology optimization for alternative sets of input variables to find the most

descriptive model. The model containing all variables was the only one performing better than the reference

linear models, as assessed by the correlation between predictions and observations. The inability to identify

a smaller subset of most predictive parameters may reflect either diffuse causal mechanisms or just the ab-

sence of critical experimental indicators from the dataset. The iterative ANN model identified is useful to pre-

dict future data. The sensitivity analysis of the model suggests that past incidence has a small effect on the

number of PRP cases.
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INTRODUCTION

S
TREPTOCOCCUS PNEUMONIAE (the pneumococcus) is the main

bacterial cause of respiratory tract infections associated with

morbidity and mortality. It is estimated that pneumococcal in-

fections every year cause the death of 1–2 million children. In

recent decades, penicillin- and multiresistant strains have

emerged and spread rapidly between and within countries in

Europe and the world.5 Some countries have experienced a sit-

uation with 60–70% resistance rates to penicillin, resulting in

fewer treatment options and greatly increased costs for caring

for patients with pneumococcal infections.18

To understand the effect of preventive measures against

pneumococcal infections, efficient surveillance is of paramount

importance. In Sweden, infections with and carriage of peni-

cillin-resistant pneumococci (PRP) with penicillin G (PcG)

MIC � 0.5 mg/L have been notifiable since 1996 according to

the Communicable Disease Act.

Sweden is still a country with a comparatively low rate of

infection of S. pneumoniae with reduced susceptibility to peni-

cillin (MIC � 0.12 mg/L). For many years, the percentage of

such isolates was well below 5%, with the exception of parts

of the Skåne Region in southern Sweden, where the rate in-

creased in the early 1990s to about 8–15%.9,10,16,23

A large proportion of penicillin- and multiresistant pneumococci

strains belong to a limited number of international epidemic clones.

A previous study has described the introduction and spread of an

international type 9V PRP clone (resistant to PcG and trimetho-

prim-sulfamethoxazole; TMP/SMX) in southern Sweden.19 This

clone has since spread to large parts of Sweden.13 In the Skåne

Region of southern Sweden, the spread of this clone has tended to

persist in communities with a high-level consumption of antibi-

otics by preschool children and to abate in communities with a low

consumption. A cross-sectional study in the same county has

shown that the frequency of penicillin-resistant pneumococci in

children is correlated to community utilization of antibiotics.20
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Although, the evidence of the importance of antibiotic con-

sumption for the spread of PRP is overwhelming,2,7,8,12,20 the con-

ditions that favor the spread of resistant clones are only partially

understood. Mathematical models provide a convenient frame-

work for improving our understanding of the patterns of infection

and the effect of preventive measures. For surveillance data on

infectious diseases that typically comprise a number of time se-

ries of disease counts, each representing a specific geographical

area, models that incorporate both the spatial and temporal effect

tend to be cumbersome to formulate. In this paper, an artificial

neural network (ANN)-based approach is applied to analyze a data

set of monthly counts of the incidence of an international epi-

demic PRP clone in the 32 municipalities of the Skåne Region in

the southern part of Sweden from 1997 to 2003.

ANNs are a wide class of computational techniques for flex-

ible nonlinear regression and discriminate models, data reduc-

tion models, and nonlinear dynamical systems.3 During the last

decade, this class of techniques has gained increased popular-

ity and has been proposed as a supplement or alternative to stan-

dard mathematical and statistical tools. These techniques are

widely used in other medicine disciplines,17 and have been

shown to be ideally suited to the analysis of complex data sets

when the underlying mechanisms are unknown or too complex

for explicit formulation. However, knowledge of the perfor-

mance of ANN for describing and predicting infectious diseases

is insufficient.1 Using the search terms ‘infections AND neural

networks’ yields 80 hits searching PubMed (December, 2005),

which promotes further research in the field.

In this study we developed an ANN to describe and predict

the spread of PRP in space and time as a function of antibiotic

consumption and a number of different confounders.

MATERIALS AND METHODS

PRP cases

Notification of PRP (PcG MIC � 0.5 mg/L) is done in par-

allel to the Swedish Institute for Infectious Disease Control

(SMI) and to the County Medical Officers of Communicable

Disease Control. This timely notification includes both labo-

ratory notification of all isolates (one from each patient) and

clinical notification of carriage and/or infection from the clin-

icians. All reports are made with full person identity, and the

various notifications on the same patient are merged into case

records, using a unique personal identification number issued

to all Swedish residents.15 The isolated PRP strains are rou-

tinely sent to the SMI for further typing; all isolates are

serotyped and selected isolates are further genetically typed,

using pulsed-field gel electrophoresis (PFGE) and multilocus

sequence typing (MLST). All persons identified through the

notification system since 1996 carrying or infected with the

epidemic 9V clone were considered for inclusion in the study,

but due to the limited number of cases in parts of the country,

the initial retrospective study was based on data from the Skåne

Region alone.

Antibiotic consumption

In Sweden, antibiotic products can only be obtained by physi-

cian prescriptions from pharmacies owned by Apoteket AB (the

National Corporation of Swedish Pharmacies). This corporation

regularly collects and processes detailed and extensive informa-

tion on drug utilization in a national database. From this data-

base, we obtained data on the weekly number of dispensed oral

outpatient antibiotic prescriptions for systemic use (the whole J01

group of the Anatomical Therapeutic Chemical [ATC] Classifi-

cation System) to children aged 0–6 years in each municipality

in the Skåne Region.14 Data expressed as number of prescrip-

tions was chosen in favor of defined daily dose to better reflect

prescribing activity to children, and make data less sensitive to

changes in dosage and length of treatment courses. Data on an-

tibiotic consumption show a strong seasonal effect.14 Therefore,

to separate the effect of consumption in the analysis from that of

season, data on antibiotic consumption was deseasonalized.6

Travel intensity

To capture the spatial interactions between different mu-

nicipalities, we obtained data from the National Travel Survey

on the number of travels between different municipalities as-
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FIG. 1. Topology of the ANN model. All input variables contribute to the sum in the p hidden nodes. The contribution is multi-
plied with a weight listed in the w matrix. The output from the hidden nodes in the hidden layer to the single hidden node in sec-
ond layer is multiplied with a weight listed in the v vector. The outcome of the second layer is the predicted number of PRP cases.



sembled by Statistics Sweden. These data are based on a

monthly random sample of phone interviews to 1,000 house-

holds. The interviewees were asked about the dates and desti-

nations of short and long (�100 km) travels during the last 30

days.24 The total number of travels (long and short) into a mu-

nicipality during the whole study period was used as an ex-

planatory variable.

Study area

Skåne is the third largest county of Sweden, with 33 munici-

palities and approximately 1.15 million inhabitants, including 84,

112 children aged 0–6 years (2003). It is located in the very south

of Sweden and has sea borders with Denmark, Germany, and

Poland. In 2003, a total of 68,072 recipes (the whole ATC group

J01) were prescribed to children aged 0–6 years and in the same

year 156 cases of PRP were notified to the SMI.

Artificial neural networks

For the development and training of the neural networks, we

used a Web-based ANN computing tool (http://bioinformat-

ics.musc.edu/webnn) created and maintained at the Medical

University of South Carolina, which follows guidelines sug-

gested in ref. 3. A mirror version is also publicly and freely

available by Microcortex Inc. (http://www.microcortex.com).

That report is referred to for further information regarding im-

plementation of cross validation and topology design criteria.

This software library has been used and validated by several

subsequent applications relevant to this study, such as clinical

decision making,21 time-series modeling,25 implicit modeling,27

and statistical inference.4 The topology of the resulting ANNs

is illustrated in Fig. 1 as fully connected multilayered percep-

trons with one hidden layer and one sigmoid layer output. The

perceptron is a nonlinear model for predicting the outcome yt,

at time-point t, in our case the number of PRP cases, as a func-

tion of some independent variables x1,t, x2,t, . . . , xn,t. The ANN

model is shown mathematically in Equation 1a:

yt(x1,t, x2,t, . . . , xn,t,v1,v2, . . . , vp, w1, w2, . . . , wn·p)

� (1a)

Aj,t(x1,t, x2,t, . . . , xn,t) � tanh (∑
n
i�1wijXj,t)

where X is a matrix with ones in the first column and the in-

dependent variables x1,t, x2,t, . . . , xn,t column 1 to n, w and v

represent the set of weights used, and p is the number of neu-

rons in the hidden layer in the model (see Fig. 1). The outcome

yt is a real number between 0 and 1, which is scaled to a num-

ber between the minimum and maximum number of cases in

the training data set.

Five different models constructed with different sets of ex-

planatory variables were trained and evaluated. In model 1, the

simplest case, the incidence of PRP is explained by the sea-

1
��
1 � e

�∑
p
j�1

vjAj,t
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TABLE 1. DESCRIPTION OF INPUT VARIABLES

Variable Variable
number name Description

1 Week Week number, 1–53 (independent of year)
2 dsRecipe1 The number of antibiotic recipes last week (this municipality), deseasonalized.
3 dsRecipe2 The number of antibiotic recipes 2 weeks back (this municipality), deseasonalized
4 dsRecipe3 The number of antibiotic recipes 3 weeks back (this municipality), deseasonalized
5 dsRecipe4 The number of antibiotic recipes 4 weeks back (this municipality), deseaonalized
6 Children The population (0–6 years) this year (this municipality)
7 Population The total population this year (this municipality)
8 Not1 Number of PRP cases last week (this municipality)
9 Not2 Number of PRP cases 2 weeks back (this municipality)

10 Not3 Number of PRP cases 3 weeks back (this municipality)
11 N1t1 Number of PRP cases last week (most common travels municipality)
12 N1t2 Number of PRP cases 2 weeks back (most common travels municipality)
13 N1t3 Number of PRP cases 3 weeks back (most common travels municipality)
14 N2t1 Number of PRP cases last week (second most common travels municipality)
15 N2t2 Number of PRP cases 2 weeks back (second most common travels municipality)
16 N2t3 Number of PRP cases 3 weeks back (second most common travels municipality)
17 N3t1 Number of PRP cases last week (third most common travels municipality)
18 N3t2 Number of PRP cases 2 weeks back (third most common travels municipality)
19 N3t3 Number of PRP cases 3 weeks back (third most common travels municipality)
20 TfN1 Number of travels from most common municipality to this municipality (total for period)
21 TfN2 Number of travels from second most common municipality to this municipality (total for

period)
22 TfN3 Number of travels from third most common municipality to this municipality (total

for period)
23 Last4Weeks Number of PRP cases the last 4 weeks (this municipality)
24 Cases (Noto) (Target variable � outcome) The number of PRP cases (index � contact) this week 

(this municipality)



sonality. Cross validation yields an optimal network with three

hidden nodes, which turns Equation 1a into the following:

yt(xt,v1,v2,v3,w1,w2,w3) � (1b)

Aj,t(xt) � tanh (wjxt)

where xt � {{1, . . . ,53}, . . . ,(1, . . . ,53}} and vi and wi are

real number weights (parameters). The recursiveness in the

model implementation was achieved by embedding the time se-

ries.11

Sensitivity analysis

To investigate the effect on the outcome of each parameter

in the ANN model, sensitivity analysis was used.26 Each vari-

able in the input was varied whereas the rest of the inputs were

held constant. The change in the output compared to the vari-

ation in the input yielded the sensitivity, which showed the rel-

ative importance among the input variables. A high sensitivity

means that a small variation in the input results in a high vari-

ation in the output. Equation 2 describes how the sensitivity of

variable xj on the outcome y, Sykxi
, was calculated,

Sykxi
� � (2)

Predictability

As a measure of the performance of a model, the mean square

prediction error (MSPE)

mspe � (3)
�

n

i�1
(�yi� � �ŷi�)2

���
n � p

xj
�
y

dy
�
dxj

1
��
1 � e

�∑3
j�1

vjAj,t�	

and the correlation coefficient between observed and predicted

data was calculated and used to compare the different models.

RESULTS

Retrospective data from 1997 to 2000 were used to train the

ANN models, and data from 2001 to 2003 were used for eval-

uation of the model predictions. Five different ANN models

were trained, all with different sets of input variables in order

to find the most descriptive model. Table 1 contains a descrip-

tion of all variables and Table 2 summarizes the input variables

used in each model. Each model was trained five times to con-

trol how stable the model was regarding the random weights.

As a first selection criterion, we choose the network within a

model with the best correlation between observation and pre-

dictions as the optimal network, which was then used further

in the work. The five models differed in topology (Fig. 1) and

the number of hidden nodes and the number of unknown par-

ameters is presented in Table 3.
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TABLE 2. LIST OF VARIABLES USED IN THE MODELS

Variable Variable
number name Model 1 Model 2 Model 3 Model 4 Model 5

1 Week X X X X X
2 dsRecipe1 X X X X
3 dsRecipe2 X X
4 dsRecipe3 X X
5 dsRecipe4 X X
6 Children X X X
7 Population X
8 Not1 X
9 Not2 X

10 Not3 X
11 N1t1 X
12 N1t2 X
13 N1t3 X
14 N2t1 X
15 N2t2 X
16 N2t3 X
17 N3t1 X
18 N3t2 X
19 N3t3 X
20 TfN1 X X
21 TfN2 X X
22 TfN3 X X
23 Last 4 Weeks X
Number of variables 1 2 3 9 23

TABLE 3. NUMBER OF HIDDEN NODES AND NUMBER OF

UNKNOWN MODEL PARAMETERS

Number of hidden nodes Number of
Class in the first layer (hn) parameters (p)

Model 1 3 6
Model 2 3 9
Model 3 5 20
Model 4 9 90
Model 5 9 216



The second selection was made by choosing the model with

the highest correlation among the five different models and was

considered to perform the best fit and prediction of data. Cor-

relation coefficients for two reference models were: (1) the me-

dian number of cases per week and per county and (2) the me-

dian number of cases per county are presented for comparison.

A model performing worse than the reference models was not

considered as useful. The resulting correlation coefficients are

presented in Table 4.

Model 5, containing all the explanatory variables, was the

only model performing better than the reference models ac-

cording to the correlation coefficient. However, the differences

between different models were relatively small and the addi-

tional improvement of the larger model should be compared to

the additional complexity of the model. Figure 2 shows a plot

using Model 5 containing both training and evaluation data.

Sensitivity analysis

Sensitivity analysis was performed on all trained ANNs (pre-

sented in Table 5 and Figure 3). The seasonality had a high im-

pact (sensitivity) at the outcome for all the models. This was

not unexpected, because PRP like all respiratory tract infections

is known to have a strong seasonal trend. Furthermore, the an-

tibiotic sales (recipes), the child population (children), and the

transportation intensity between municipalities (TfN1–TfN3)

had some effect on the outcome. In contrast to the autocorre-

lation function,6 showing that PRP data were autocorrelated up

to 1 year back (Fig. 4), the variables representing the past num-

ber of cases all had low sensitivities (
1%) indicating a low or

no dependency on the past.

DISCUSSION

In this paper, we have described a new methodology to de-

scribe the space-time pattern of the number of infections with

penicillin-resistant pneumococci in the Skåne Region of south-

ern Sweden. Five different ANN models were developed and

reviewed, all with similar topology differentiated by the num-

ber of input variables. Considering the evaluation data, corre-

lation between predictions and observations as well as the mean

square prediction error, yields Model 5 to be the better predic-

tor. Model 5 is the most extensive model with 23 different in-
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TABLE 4. THE CORRELATION COEFFICIENT BETWEEN

PREDICTIONS AND OBSERVATIONS AS WELL AS THE MEAN

SQUARE PREDICTION ERROR (MSPE) FOR EACH MODEL

Correlation
coefficient MSPE

Class 1997–2000 2001–2003

Model 1 0.007 0.227
Model 2 0.312 0.148
Model 3 0.358 0.154
Model 4 0.396 (3) 0.158
Model 5 0.514 (5) 0.124
Reference model:

“Median per time
per county” 0.413 0.126

Reference model:
“Median per county” 0.298 0.136

Two reference models are included in the table for compar-
ison, namely: The median per time per county and the median
per county.
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FIG. 2. Plot of the predicted number of cases per week in the Skåne Region using Model 5. The model was trained using data
from 1997 to 2001 and validated using data from 2001 to 2004.
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TABLE 5. SENSITIVITIES FOR ALL INPUT VARIABLES OF EACH MODEL

Variable
number Variable name Model 1 (%) Model 2 (%) Model 3 (%) Model 4 (%) Model 5 (%)

1 Week 100 52.5 40.6 12.3 1.9
2 dsRecipe1 — 47.5 15.9 1.9 1.0
3 dsRecipe2 — — — 1.6 3.0
4 dsRecipe3 — — — 1.4 0.9
5 dsRecipe4 — — — 2.9 1.9
6 Children — — 43.5 4.6 7.2
7 Population — — — — 4.9
8 Not1 — — — — 0.5
9 Not2 — — — — 0.2

10 Not3 — — — — 0.1
11 N1t1 — — — — 0.5
12 N1t2 — — — — 0.3
13 N1t3 — — — — 0.3
14 N2t1 — — — — 0.5
15 N2t2 — — — — 0.2
16 N2t3 — — — — 0.2
17 N3t1 — — — — 0.1
18 N3t2 — — — — 0.4
19 N3t3 — — — — 0.1
20 TfN1 — — — 42.1 12.7
21 TfN2 — — — 11.5 33.1
22 TfN3 — — — 21.7 30.0
23 Last 4 Weeks — — — — 0.3

FIG. 3. Plot illustrating sensitivity analysis of Model 5, when varying each input at a time with 5%. The graph shows whether
or not each variable has a positive or negative effect on the prediction throughout the train data period.

http://www.liebertonline.com/action/showImage?doi=10.1089/mdr.2006.12.149&iName=master.img-000.jpg&w=383&h=284


put variables. Figure 2 shows a plot using Model 5 containing

both training and evaluation data.

Although Model 5 gives the better predictions, the difference

with Models 2–4 is quite small. It is important to consider the

increased model complexity to the difference in prediction qual-

ity. Consider also that Models 1–4 make worse predictions than

the reference model, i.e., the median number of cases per week

and per county. This is a very simple model and Model 5 barely

predicts better, which might suggest continuing looking at a

model with less complexity.

Even though Model 5 makes good predictions, it is hard to in-

terpret the results. Sensitivity analysis sheds light on what effect

the input parameters have on the outcome as well as what type

of proportionality that each input parameter has to the outcome.

Table 5 and Figure 3 illustrate the sensitivity analysis, which

shows that: (1) there is a seasonal trend (variable 1) in the data;

(2) the antibiotic sales have a slight positive effect on the out-

come; (3) the number of children in a municipality has a posi-

tive effect while the total population has a negative effect on the

outcome; (4) the number of cases the previous week has a slight

positive effect whereas the number of cases weeks before that

and in closely related municipalities has no effect on the out-

come; and (5) the travel intensity has a high effect on the out-

come, although not clearly positive or negative. The lack of an

error estimate for the sensitivities makes these results unreliable.

One fact does support the result. During the optimization of the

ANN, several subsets of input variables were used to train about

25 different ANN models. The sensitivity analysis of these ANN

models supports the antibiotic sales, the child population, the to-

tal population, and the transportation factor as having a greater

effect of the outcome than the other input variables.

One hypothesis that was also demonstrated by the autocor-

relation function for the number of PRP cases was that there is

a time-dependency between the number of PRP cases. These

input variables (variable numbers 8–19) all had a low effect on

the outcome according to the sensitivity analysis. All ANN

models indicated that the past had less effect on the outcome

than the input variables discussed above. The week was im-

portant, which is an indicator of the strong seasonality with the

highest peak during wintertime in our data. The transportation

is thought to be an alias for the population.

Although the more traditional statistical models are relatively

intuitive to interpret, ANN models are more complex to inter-

pret and besides that also require more computational time.

Rather than testing predefined hypotheses about the dependent

and independent variables, the ANNs are treated more like a

black box, with the aim toward fast and easy filtering of large

data sets for variables that have a greater effect on the outcome

than the rest. The resulting ANN model can be used for real-

life predictions if it is stable enough, but it is probably better

used as an indication on which variables to concentrate on when

designing a traditional statistical model. In the project described

in this paper, the resulting ANN model makes good predictions

when validating them with the data from 2001 to 2003. This

indicates that the model will be useful to model future data, but

the main result of this study is that antibiotic sales as well as

the past have a small effect on the number of PRP cases. Al-

though a general association between antibiotics consumption

and resistance per se is undisputable, one possible explanation

for the small effect on the number of PRP cases in this specific

setting is the possibility of a threshold level of antibiotics con-

sumption, below which the selective pressure of antibiotics on
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FIG. 4. Autocorrelation function for weekly data on the number of PRP cases (all municipalities aggregated). Values above
(the upper) or under (the lower) dotted lines represent a 95% significant autocorrelation.



the spread of resistant clones is low compared to other factors.

Another possible explanation is a longer lag time between an-

tibiotics consumption and an effect on the transmission rate, as

has been suggested in previous studies.2,22

One problem with the ANN topology used in this paper is

the sigmoid function (definition interval from 0 to 1) in the last

layer. This implies that the resulting predictions will vary in the

interval from the minimum and maximum number of cases (in

the train data set), which is not very realistic. This may be ad-

dressed by using an inverse sigmoid or linear function (defini-

tion interval �� to �) instead of the sigmoid function. On the

other hand, using a bounded output transfer function leads to

more conservative predictions. Therefore, the comparative

study of transfer function selection for modeling the emergence

of antibiotic resistance should be accessed in future studies.

Another concern is the autocorrelation in data. A possible

improvement in modeling the PRP spread is the use of a truly

recurrent neural network (where the recurrence is topological—

an output node is also input node of subsequent iteration—in-

stead as phenomenological recurrence as used here), which im-

plies a similar network topology used in this paper. The main

difference is one or more additional “memories,” which uses

information from previous weeks when making a prediction.
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