Personal microbiology laboratory strengthening experiences in Asia

Heiman Wertheim, MD PhD Oxford University Clinical Research Unit National Hospital of Tropical Diseases Hanoi, Vietnam

Addressing resistance

Source: ReAct

Data sources

• Data on antibiotic resistance from Asia increasingly ending up in the literature

• But...

How reliable is identification?

Fig. 1. Number of *Streptococcus suis* cases diagnosed per month during 2007 at the National Hospital for Tropical Diseases

How reliable are resistance rates?

Lab issues resistance testing Asia

- Insufficient knowledge/training
- Insufficient funding
- Quality control often not in place
- No standard procedures
- No confirmation of unlikely resistances
- Errors in interpreting CLSI guideline (only use tables)
- Poor biosafety standards
- Poor waste management

 \rightarrow Capacity strenthening required

Figure 1. South East Asia Infectious Disease Clinical Research Network sites and laboratories.

Health in Action

Laboratory Capacity Building in Asia for Infectious Disease Research: Experiences from the South East Asia Infectious Disease Clinical Research Network (SEAICRN)

Heiman F. L. Wertheim^{1,2,3}*, Pilaipan Puthavathana⁴, Ngoc My Nghiem^{1,5}, H. Rogier van Doorn^{1,3,5}, Trung Vu Nguyen⁶, Hung Viet Pham⁷, Decy Subekti^{1,8}, Syahrial Harun⁹, Suhud Malik⁹, Janet Robinson¹⁰, Motiur Rahman¹⁰, Walter Taylor^{1,3,11}, Niklas Lindegardh^{1,3,11}, Steve Wignall^{1,8}, Jeremy J. Farrar^{1,3,5}, Menno D. de Jong^{1,5,12}

1 South East Asia Infectious Diseases Clinical Research Network, 2 Oxford University Clinical Research Unit, National Hospital of Tropical Diseases, Hanoi, Vietnam, 3 Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom, 4 Siriraj Hospital, Mahidol University, Department of Microbiology, Bangkok, Thailand, 5 Oxford University Clinical Research Unit, Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam, 6 National Hospital of Tropical Diseases, Hanoi, Vietnam, 7 National Hospital of Pediatrics, Hanoi, Vietnam, 8 South East Asia Infectious Disease Clinical Research Network (SEAICRN) Coordinating Center, Eijkman Institute, Jakarta, Indonesia, 9 National Institute of Health Research and Development, Jakarta, Indonesia, 10 Family Health International, Bangkok, Thailand, 11 Mahidol-Oxford Research Unit, Mahidol University, Bangkok, Thailand, 12 Academic Medical Center, Amsterdam, The Netherlands

Summary Points

- Enhancing laboratory capacity is essential for generating reliable and accurate data from clinical research, especially in resource-constrained settings.
- Local well-trained laboratory experts and scientists are important to research, and must participate actively in scientific activities and continuing education programs.
- Improving laboratory capacity is more than supplying new equipment and reagents; it also includes a long-term commitment to staff training, quality control, and biosafety.
- Improved laboratory capacity optimizes responses to an epidemic or an outbreak of a novel virulent pathogens, and can support international agendas

Capacity strenthening activities

- Infrastructure
 - Reliable electricity (UPS, generator, earthing)
 - Biosafety cabinets (don't use clean benches)
 - Equipment maintenance
 - Lab space, working area, benches
- Quality
 - Documentation (labelling, recording, reporting)
 - Internal/external quality assurance
 - Temperature logs (often pre-written)
 - Accreditation (for those up to it)

Making plans in 2008

Moving out

Temporary labs

Demolition

Construction

Moving in

Earthed power supply

Extending into balconies to enlarge laboratory space

Generator back-up

Finishing touches

New labs ready

According to plans

Operational by July 2010

Ľ.

REWORK

Resistance Surveillance Project in Vietnam

- Monitor resistance in 15 hospitals by MoH
- Auditing labs and data quality
- Translate CLSI guidelines into Vietnamese

Over testing

S. aureus	P. aeruginosa	Acinetobacter	E. coli	Klebsiella
	Amoxicillin/ clavulanic			
Amikacin	acid	Amoxicillin/ clavulanic acid	Cefoperazone	Neltimicin
Amoxicillin/			Cefoperazon/	
clavulanic acid	Ampicillin/ sulbactam	Ampicillin	sulbactam	Cefoperazone/ sulbactam
Ampicillin	Cefoperazone	Cefoperazone	Fosfomycin	Cefoperazone
Ampicillin/ sulbactam	Cefoperazon/ sulbactam	Cefoperazone/ sulbactam	Neltimicin	
Cefepime	Cefotaxime	Cefuroxime	Amoxicillin	
Cefoperazone	Ceftriaxone	Cephalothin		_
Cefotaxime	Cefuroxime	Chloramphenicol		
Cefoxitin	Chloramphenicol	Ertapenem		
Ceftazidime	Ertapenem	Neltimicin		
Ceftriaxone	Neltimicin	Norfloxacin		
Cefuroxim	Nitrofunratoin	Ofloxacin		
	Trimethoprim/			
Cephalexin	Sulfamethoxazol			
Cephalothin				
Ertapenem				
Fosfomycin				
Imipenem				
Piperacillin/				
tazobactam				

Quality assurance issues

- Internal
 - Media / reagents not checked
 - Inoculum
- External
 - Problems receiving EQA panels
 - Local EQA schemes under development

Experience with an external quality assurance scheme for antimicrobial susceptibility testing of *Neisseria gonorrhoeae* in India, 2001–2007

Table 1. Overall performance of laboratories participating in the Indian GASP EQAS for six strains and six antibiotics, 2001–2007

Antibiotic	Year [number incorrect*/number tested (percentage of all errors)]								
	2001	2002	2003	2004	2005	2006	2007		
Penicillin	9/26	4/21	11/27	12/30	3/32	8/36	2/36		
	(34-6)	(19-0)	(40.7)	(40.0)	(9-4)	(22.2)	(5.8)		
Ciprofloxacin	6/24	6/21	9/27	9/30	2/32	5/36	4/36		
	(25.0)	(28-6)	(33.3)	(30.0)	(6.3)	(13.9)	(11.1)		
Nalidixic acid	10/23	7/21	10/27	8/30	0/29	3/36	0/36		
	(43.5)	(33.3)	(37.0)	(26.7)	(0.0)	(8.3)	(0.0)		
Spectinomycin	7/24	6/21	10/27	6/30	3/32	1/36	0/36		
	(29-1)	(28.6)	(37-0)	(20-0)	(9.4)	(2.8)	(0.0)		
Tetracycline	9/26	1/21	3/27	4/30	2/32	4/36	2/36		
	(34.6)	(4-8)	(11.1)	(13.3)	(6.3)	(11.1)	(5.8)		
Total†	41/123	24/105	43/135	33/150	10/167	21/180	8/180		
	(33)	(22.8)	(31.8)	(26)	(6)	(11-6)	(4.4)		

EQAS of Nepal laboratories for organism identification and susceptibility testing

Introducing simple QA

- Provide ATCC strains
 - Escherichia coli
 - Klebsiella pneumoniae
 - Pseudomonas aeruginosa
 - Staphyloccus aureus
- Test weekly for specific AB

Training training training

- Need for well trained staff at reference labs that can train others (even a fancy lab is as good as the people working in it)
- Know what to test, when to test and how to report
- Understand resistance phenotypes and know when to confirm unlikely resistances
- Can trouble shoot
- Be confident enough to counter the clinician!!

Key challenges

- Investment time/money with long term goals and not short term fixes
- Working towards accreditation is concrete goal but local circumstances can make it tough to adhere to high standards
- Commitment hospital/laboratory leaders
- EQA not always available but provide simple tools to improve quality
- Timely procurement of reagents that expire...
- Training
- Bring clinicians, pharmacists, microbiologists together

THANK YOU