

Global Antibiotic Resistance Partnership

Acknowledgements

- GARP has been funded by a grant to CDDEP from the Bill & Melinda Gates Foundation
- Ramanan Laxminarayan, Pl
- Modeling:
 - Itamar Megiddo (CDDEP)
 - David L Smith
 - Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
 - Eili Klein
 - Princeton University

Outline

- Introduction
- Pneumococcal Modeling
- PneuMOD

Source: World Health Organization, 2002

Source: World Health Organization, 2002

Interventions to prevent & control pneumococcal disease

Prevention

Treatment

Protection

Policy Questions

- How can we best (<u>most cost-effectively</u>) reduce pneumococcal disease burden through a combination of tools (vaccination, treatment)?
- Can increased treatment access reduce the burden of disease in the long term when drug resistance is likely?
- What is the value of treatment access improvements in countries with pneumo vaccination?
- What population level strategies (like multiple first line treatments or subsidized high quality antibiotics) can most address the challenge of resistance?

Outline

- Introduction
- Pneumococcal Models
- PneuMOD

Why model pneumococci?

- How many lives could be saved?
- At what cost?
 - Purchase cost of interventions
 - Opportunity cost
- How certain are the answers?
- How could uncertainty be reduced?

What is a model?

How does a model of pneumococci work?

From Individuals

To Populations

Colonization / Infection

Transmission Shedding/ Mixing / Exposure

Serotypes

Infection and Immunity, August 2005, p. 4653-4667, Vol. 73, No. 8 0019-9567/05/\$08.00+0 doi:10.1128/IAI.73.8.4653-4667.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Illustration of Pneumococcal Polysaccharide Capsule during Adherence and Invasion of Epithelial Cells

Immunity

Age-Specific Incidence of Invasive Pneumococcal Disease in the United States by Serogroup

Lipsitch, M. et al. PLoS Med 2, e15 (2005).

Drug Treatment & Resistance

Biology, Ecology, Epidemiology, Economics...

- Colonization
 - Duration
- Transmission
 - Shedding
 - Contact
 - Establishment
- Microbial Competition
 - Exclusion
 - Dominance
- Infection

- Immunity
 - Inhibit Colonization
 - Prevent Disease
 - Strain Specificity
- Interventions
 - Drugs
 - Vaccines

Outline

- Introduction
- Pneumococcal Models
- PneuMOD

Markov-Chain Carriage Model

Colonized

Population growth

Uncolonized

Population decay

Shedding Increases

Markov-Chain Carriage Model

Infection

Increasing Risk

Immune Stages

◆ Duration of Carriage
◆ Prob. Colonization after Exposure
◆ Shedding
◆ Risk of Infection
◆ Severity of Disease

Competition (Serotypes & Strains)

Meets Strong "Neutrality" Conditions

Drug Treatment / Compliance

Ordinary Differential Equations.... ...Individual-Based Simulation

 $\dot{u}_{0} = d_{1,0} (x_{1,0} + y_{1,0}) - \Lambda u_{0} + \mu (1 - u_{0}) \quad \text{with maternal immunity}$

if k > 1 in m.i. case $u_k = d_{1,k} (x_{1,k} + y_{1,k}) - \omega_k \Lambda u_k - \gamma_k u_k + \gamma_{k+1} u_{k+1} - \mu_N u_k + mu_0$ s.t. $k \ge 1$

$$\begin{aligned} x_{i,k} &= d_{i+1,k} x_{i+1,k} + b_{i-1,k} x_{i-1,k} - (d_{i,k} + b_{i,k}) x_{i,k} + (\alpha_{i,k} y_{i,k} - \sigma_{i,k} x_{i,k}) - \theta_{x,i,k} x_{i,k} + \theta_{x,i,k-1} x_{i,k-1} \\ &+ c_{i,k} \omega_k \Lambda (1 - p_{i,k}) (u_k + \sum_{w \le i-2} x_{w,k}) + c_{i-1,k} \omega_k \Lambda (1 - p_{i-1,k}) x_{i-1,k} \\ &- \omega_k \Lambda \sum_{w \ge i-1} c_{w,k} x_{i,k} - \mu_N x_{i,k}^+ m x_k \\ &\vdots \\ y_{i,k} &= d_{i+1,k} y_{i+1,k} + b_{i-1,k} y_{i-1,k} - (d_{i,k} + b_{i,k}) y_{i,k} + (\sigma_{i,k} x_{i,k} - \alpha_{i,k} y_{i,k}) - \theta_{y,i,k} y_{i,k} + \theta_{y,i,k-1} y_{i,k-1} \\ &+ c_{i,k} \omega_k \Lambda (p_{i,k} [u_k + \sum_{w \le i-1} x_{w,k}] + \sum_{w \le i-1} y_{w,k}) + c_{i-1,k} \omega_k \Lambda (p_{i-1,k} x_{i-1,k} + y_{i-1,k}) \\ &- \omega_k \Lambda \sum_{w \ge i-1} c_{w,k} y_{i,k} - (\mu_N + \mu_I) y_{i,k}^+ m x_k \end{aligned}$$

CDDEP THE CENTER FOR Disease Dynamics, Economics & Policy WASHINGTON DC . NEW DELHI

•

m.i. k = 0 (-); k > 0 (+)

Simulated Vaccination

The model produces important policy relevant results

Simulated for Kenya

Need better data for...

- Duration of carriage
- Complexity of colonies
- Risk of infection
- Competitive dominance
- Immunity
 - Colonization
 - Infection

Disease Dynamics, Economics & Policy

- Cross-immunity
- Age

- Local strains
- Health seeking
- Treatment compliance
- Non-sterile tissue PK/PD
- Underlying populations
- Human mobility

Pneumococcal Disease Under-5 Country Burdens

Source: World Bank, 2000; World Health Organization, 2000

CDDEP THE CENTER FOR Disease Dynamics, Economics & Policy WASHINGTON DC - NEW DELHI