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Despite the availability of many drugs and therapies to treat malaria,

many countries’ national policies recommend using a single first-line

therapy for most clinical malaria cases. To assess whether this is the

best strategy for the population as a whole, we designed an evolu-

tionary-epidemiological modeling framework for malaria and com-

pared the benefits of different treatment strategies in the context of

resistance evolution. Our results show that the population-wide use

of multiple first-line therapies (MFT) against malaria yields a better

clinical outcome than using a single therapy or a cycling strategy

where therapies are rotated, either on a fixed cycling schedule or

when resistance levels or treatment failure become too high. MFT

strategies also delay the emergence and slow the fixation of resistant

strains (phenotypes), and they allow a larger fraction of the popula-

tion to be treated without trading off future treatment of cases that

may be untreatable because of high resistance levels. Earlier papers

have noted that cycling strategies have the disadvantage of creating

a less temporally variable environment than MFT strategies, making

resistance evolution easier for the parasite. Here, we illustrate a

second feature of parasite ecology that impairs the performance of

cycling policies, namely, that cycling policies degrade the mean fitness

of the parasite population more quickly than MFT policies, making it

easier for new resistant types to invade and spread. The clinical

benefits of using multiple first-line therapies against malaria suggest

that MFT policies should play a key role in malaria elimination and

control programs.

drug resistance � epidemiology � evolution � treatment strategies �

cost of resistance

Prompt treatment with effective antimalarials is a crucial element
of malaria control, but the effectiveness of antimalarial drugs

can be seriously compromised by the evolution of drug resistance
in the Plasmodium spp. that cause malaria. The evolution and
worldwide spread of resistance to chloroquine (CQ) over the past
50 years (1) and the subsequent failure of sulfadoxine-
pyrimethamine (SP) (1, 2) have created a crisis for many African
nations and other malaria-endemic countries (3). A number of
these countries have adopted the highly effective artemisinin-based
combination therapies (ACTs) as their first-line therapy for un-
complicated malaria, but ACTs are not yet widely available. Ex-
tensive resistance has yet to be detected to artemisinin drugs, but
there is concern that resistance could emerge and spread rapidly
(4). Efforts to delay resistance to artemisinin have included a call
to end production of artemisinin monotherapies and plans to
subsidize ACTs to displace artemisinin monotherapies (5). As
ACTs become available and affordable in the postchloroquine era,
there will be a need to adopt sustainable treatment strategies that
will further extend the useful therapeutic life of these and other new
antimalarials.

Current and historical practice in Africa has been to recommend
a single first-line therapy or drug (we use the terms interchangeably)
for uncomplicated malaria and, when drug-resistance levels rise, to
replace the officially recommended drug with a new one to which
resistance has not yet emerged. In Kenya, for example, CQ was
replaced by SP as the first-line treatment in 1998 and SP by
artemether-lumefantrine (an ACT) during 2004–2006 on the basis

of high levels of resistance and treatment failure (6, 7). This
‘‘wait-and-switch’’ strategy burdens the surveillance networks and
public health systems of developing countries and, as we show here,
yields a suboptimal morbidity and mortality outcome. A more
sustainable strategy would be to prospectively deploy existing
antimalarials to minimize mortality and morbidity and delay resis-
tance emergence and treatment failure for as long as possible.

In this study, we evaluate the use of multiple first-line therapies
(MFT) in slowing the evolution of resistance. MFT is defined as a
drug policy in which several therapies are made available in both the
public and the private sectors, and patients and clinicians can
choose which therapy to use. For most of the analysis presented
here, we assume that the different first-line therapies are used in
equal amounts in the host population; an important area of further
study will be to determine how a particular drug-use distribution
can be achieved in a given population. Just as combination thera-
pies, wherein multiple drugs are coformulated into a single treat-
ment, delay the evolution of resistance (8–15), deploying multiple
therapies slows down resistance evolution compared with using a
single therapy for the whole population. An MFT strategy with n
drugs has two main benefits. First, it increases the variability of
drugs in the parasite’s environment, making it difficult for the
parasite to adapt to any one part of the environment. If on every
new infection, the parasite has a small chance of encountering the
same drug it saw in its previous host, evolving resistance to any
particular drug is difficult. Second, when using n drugs in equal
amounts, the rate each drug is used is cut to 1/n of total use, thus
reducing the overall selection pressure for resistance to that drug.
Rationing treatment could achieve a similar reduction in selection
pressure, but an MFT strategy reduces each drug’s use without
denying treatment. This must be balanced against the alternative of
holding the drugs in reserve under a wait-and-switch policy; such
comparisons have been done in the context of bacterial infections
and antibiotic resistance (16–19), but malaria presents unique
scientific and operational challenges. In making this comparison for
malaria, we may be able to answer a question of historical interest:
would CQ and SP still be useful if they had been deployed together?
Today, the relevant policy question that requires attention is how to
deploy the current ACTs to best effect.

We focus our analysis on the case when three different therapies
are available, and we show that using more first-line therapies (i)
significantly delays resistance emergence and treatment failure, (ii)
slows the evolution of resistance, (iii) lowers the total clinical
burden of malaria, and (iv) reduces the effect of the classic
resistance-disease tradeoff, wherein treating a single case now and
generating drug resistance may trade off with the ability to treat
several cases in the future (20, 21). In addition, we show that MFT
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strategies have better clinical outcomes and delay treatment failure
longer than the currently practiced strategies of switching among
first-line therapies, whether the switching is done on a predeter-
mined schedule or when treatment failures increase, and we reveal
a new feature of parasite ecology that makes switching strategies
disadvantageous in general.

Modeling and Theory

Basic ecological and epidemiological theory provides a sound
rationale for using multiple first-line therapies. Below, we present
the simplest general disease model that allows for treatment with n
different drugs. Let x denote the number of susceptible individuals
and yi the number of infected individuals who are being treated with
drug i; y0 is the number of individuals who are treated with no drug.
The dynamic equations

ẋ � � � dx � x �
j�0

n

�j yj � �
j�0

n

vj yj

ẏi � fix �
j�0

n

�jyj � �vi � d�yi

[1]

describe a simple SIS-like model where � is the immigration/birth
of new susceptibles, d is the hosts’ death rate, and fi is the fraction
of the population that receives drug i as treatment. The parameters
�j and �j are, respectively, the transmissibility and recovery rate of
the disease in a host being treated with drug j. For a particular drug
distribution described by the fi, the pathogen will have basic
reproductive number (22, 23):

R0 �
�

d
�
j�0

n
fj�j

vj � d
. [2]

In a population of hosts where n drugs are used in equal amounts
( fi � 1/n for i � 0), the basic reproductive number of a parasite that
evolves resistance to drug 1 will be

R0
* �

�

d
�

1

n
�

�1

v1 � d, [3]

which illustrates why increasing n, the number of drugs, is a good
way of preventing the emergence and spread of resistance. When
many drugs are used simultaneously in a population, resistant
strains (phenotypes) can appear via mutation but will have a
difficult time spreading and establishing because of their low R0. In
fact, if a particular threshold value were reached, R0

* � 1 or R0
* �

R0
sens, the resistant type would not be able to sustain a chain of

transmission and would die out. The reduction in resistance spread
by a factor of n can also be derived [see supporting information (SI)
Appendix] in models that allow for multiple infections per host (24,
25) and for standard population-genetic models of malaria evolu-
tion (26). One of the earliest malaria population-genetic models, by
Hastings (24), can be modified to include multiple therapies and,
when either the number of therapies n is large enough or the fitness
cost of resistance s is high enough, the equilibrium frequency of a
resistant type settles to

f

f � �1 � f�ns
, [4]

where f is the fraction of malaria cases that are treated by some drug
or therapy; f � ¥j�1

n fj. In the Hastings model, increasing n lowers
the frequency of resistant phenotypes, an effect that is strongest
when s is large and f is small (see SI Appendix).

In this article, we introduce a malaria-specific modeling frame-
work, based on Eqs. 1, that includes immunity, asymptomatic and
symptomatic (clinical) infections, the evolution of multidrug resis-
tance, a fitness cost for resistant strains, and de novo mutation by
which parasites can acquire resistance. We assume no cross-
resistance among the drugs. Hosts are divided into susceptible
individuals (S), asymptomatically infected individuals (A), and
infected individuals manifesting clinical disease (C); see Fig. 1 for
a diagram of the model. Individuals in the C classes are infected
with a particular strain (resistant to one or more drugs or sensitive
to all drugs) and are treated by a particular drug. Hosts are either
immunologically naı̈ve or semi-immune; semi-immune hosts are
40% as infective as naı̈ve hosts (27) and progress from an asymp-
tomatic state to clinical disease less often than naı̈ve hosts (28, 29).
Untreated asymptomatic infections are cleared in 200 days on
average for sensitive strains (30, 31) and more quickly for resistant
strains, depending on how costly resistance is to the parasite; clinical
episodes last a few days to a few weeks, depending on the effec-

Fig. 1. Schematic of basic model dynamics; see SI

Appendix for full equations. The model allows for

multiple types of resistant strains to be circulating in

the population; for simplicity, the model diagram

shows the dynamics for only one strain. Susceptible

individuals (S) can become asymptomatic (A) or symp-

tomatic/clinical (C) after receiving an infectious bite

from a mosquito. Unsuccessful treatment results from

drug resistance; successful treatment occurs when the

infecting parasites do not have resistance to the

drug(s) being used. When hosts in the C classes are

undergoing treatment, parasites can evolve de novo

resistance to the drugs being used (not shown on

diagram). The curved arrow indicates that hosts can

acquire immunity as a result of clinical disease.
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tiveness of drug treatment (30). The full set of equations and
parameter values for our model is available in SI Appendix.

We let our model settle to the drug-sensitive strain’s stable
endemic equilibrium in the absence of drug treatment, and we
evaluate the outcomes of deploying drugs in different ways. Min-
imizing resistance alone is a meaningless objective, because that is
best achieved by not using any drugs, but the total amount of illness
or death prevented over a fixed time period is a consistent measure
of success that captures the value of both treating patients today and
minimizing resistance levels in the future (20). Model results are
usually sensitive to the length of the planning horizon; in general,
the planning horizon should be chosen carefully, the main consid-
erations being when new classes of drugs may become available and
how long a particular treatment strategy will be financially and
operationally sustainable. Here, we use a planning horizon of 20
years.

We consider four criteria for evaluating drug policies. The first
is the average daily percentage of hosts who are experiencing a
clinical case of malaria (daily percentage clinical, or DPC). Clinical
case days are counted over the length of the treatment period and
discounted at an annual rate of 3%. The second criterion is the total
number of discounted clinical cases that remain untreated or
receive a failing treatment (defined as treatment of a host whose
parasites are resistant to the drugs being used). We call this the
number of treatment failures (NTF) and present it in units per year
per 100 population. NTF can be viewed as a proxy for mortality,
whereas DPC can be viewed as a proxy for morbidity. Our last two
criteria relate to the lifespan of the drugs being used: we measure
the time until the total level of resistance to the drug treatment has
reached 5% (T.05) and the time until the fraction of treatments
failing has reached 10% (T.10

F ). The 5% resistance threshold is a
danger zone for resistance evolution (32); 10% treatment failure is
the World Health Organization-recommended level at which a
national first-line therapy should be replaced (33). T.10

F determines
the useful therapeutic life (UTL) of the drug(s) being deployed.

Results and Discussion

Using our four evaluation criteria, we compared a single, two, and
three first-line therapies over a randomly sampled set P of 5,000
parameter combinations spanning a range over the basic repro-
ductive number (1.1 � R0 � 100; see ref. 29), de novo mutation rate
(10�6 � �i � 10�1), fraction of clinical cases that are treated (0.2 �

f � 1.0), the cost of resistance (0.05 � si � 0.20; see ref. 34), and
the parasite population’s inbreeding coefficient (0.0 � F � 1.0);
drug-specific parameters are subscripted by i. Using three first-line
therapies minimized failed treatments and overall clinical disease
for 92.6% of the parameter combinations tested; this means that,
without any knowledge of mutation rates or costs of resistance for
particular resistant phenotypes, the odds are 14:1 that we would
obtain a better clinical outcome by simply treating one-third of the
population with drug 1, one-third with drug 2, and the final
one-third with drug 3. When the �i are equal, an MFT strategy with
three therapies is optimal under all four criteria 99.7% of the time
(a single first-line therapy could be better in the comparisons on P

when �1 is low but �2 and �3 are high). See Fig. 2 for a typical picture
of the dynamics of resistance evolution under single and multiple
therapies.

In attempting to understand resistance evolution in a multidrug
context, we must first understand the features of our system that
have the most important effects of drug-resistance evolution in
general.

One of the key epidemiological variables that drives resistance
evolution in malaria is the fraction 	 of infected hosts that have
clinical malaria (Fig. 2 Bottom), because only hosts with symptoms
receive drug treatment; the fraction 	 is a measure of the selection
pressure on the parasite population to evolve resistance. When 	 is
low, the high level of asymptomatic hosts causes natural selection
to work against the resistant phenotypes, because competition

between sensitive and resistant parasites occurs in the absence of
drugs among asymptomatic hosts; in addition, when 	 is low, there
is little selection pressure for resistance because of the low proba-
bility that an individual parasite will encounter a drug. The effect
of a low fraction of hosts with clinical disease was hypothesized to
explain the regional absence of the dhfr Leu-164 mutation, which
confers antifolate resistance (35).

The influence of malaria transmission intensity on 	 is one of two
key relationships that drives the dynamics of our model. As R0

increases, 	 decreases because of an increased level of host immu-
nity (Fig. 3 Right), which may help explain why resistance is more
likely to arise in low transmission areas (36–38). The second
relationship is that between R0 and the equilibrium number of
clinical cases Ĉ (Fig. 3 Left); Ĉ is maximized at an intermediate R0,
because Ĉ increases with higher prevalence but decreases with
higher immunity, both of which increase with R0. This relationship
between the clinical burden of malaria and the transmission inten-
sity is in general agreement with field data (28, 39).

Increasing R0 has two basic effects on resistance evolution: it
shortens the parasites’ generation time, thus making any type of
evolution faster, and it lowers 	 weakening the selection pressure
for resistance. Fig. 3 Right shows how these two opposing effects
balance. In general, decreasing R0 when it is large will lead to earlier
treatment failure and resistance emergence, as suggested elsewhere
(40). In our model, this behavior is explained by an immunogenic
mechanism (as opposed to a recombination mechanism in other

Fig. 2. Differences between single and multiple first-line therapies. Here, R0 �

3, si � 0.1, �i � 10�5, f � 0.6, and F � 1.0. System is started at its endemic

equilibrium, and treatment is begun at time 0. (Top) Percentage of hosts under-

going a clinical episode of malaria (red line) and percentage of all hosts that are

infected (black line); red axis labels correspond to red line. (Middle) Frequency of

single- (thin black line), double- (medium black line), and triple-resistant strains

(thickblack line); a thicker line indicatesmoreresistance.Themagenta lines in the

second row indicate the fraction of incident treated cases that receive a failing

treatment. (Bottom) 	 the fraction of infections that are currently in a clinical

state and possibly being treated by drugs. As in a classic resistance epidemic, a

quick initial decrease in disease prevalence and clinical cases is followed by a

period of low prevalence, which is followed by a period when prevalence creeps

back up almost to pretreatment levels; disease prevalence will not attain its full

pretreatment level as long as there is some cost to resistance. The major differ-

ence among the treatment strategies is the pattern of fixation in the middle row.

Here and in the model in general, resistance evolution begins later and occurs

more slowly when more first-line therapies are used.
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models), whereby lowering R0 decreases population-wide immunity
and increases the proportion of clinical cases among infecteds (	).
However, any increased risk of resistance with lower R0 needs to be
balanced against the benefit of reduced transmission. As Fig. 3 Left
shows, reducing transmission below R0 � 200 yields a reduction in
clinical cases and failed treatments even when resistance evolution
is taken into account. Note that reducing R0 from 5,000 to 200
causes an increase in clinical cases and failed treatments; this occurs
in our model because (i) lowering R0 in this range reduces immunity
but has little effect on prevalence, and (ii) for the 20-year timeframe
we have chosen, resistance barely emerges for these extremely high
R0 values, and the clinical outcomes for these situations can be
compared in the absence of resistance evolution.

In addition to the transmission intensity described by R0, a second
influential parameter in our model is the fraction f of clinical cases
that are treated by drugs. Depending on the price of treatment and
the local population’s access to clinics and pharmacies, f will vary
greatly from region to region. When more cases are treated,

resistance and treatment failure arrive more quickly (see Fig. 4),
and we obtain the standard result that treating the fewest patients
results in the least resistance.

However, when considering the clinical outcomes DPC and NTF,
it is no longer optimal to treat the fewest patients. Fig. 4 Lower
shows that it is optimal to treat all patients when the cost of
resistance is high (s � 0.2) and approximately one-half of patients
when the cost of resistance is low (s � 0.2); the optimal treatment
fraction f* is sensitive to the length of the outlook period. Consider
Fig. 4 where s � 0.1. Here, when the treatment fraction is low ( f �
0.2), resistance does not emerge, and NTF depends only on the
fraction of cases treated and is unaffected by treatment strategy; if
there is no resistance, there is no benefit to using MFT over a single
first-line therapy or vice versa. For f � 0.4, it becomes clear that
MFT strategies result in fewer failed treatments (and fewer clinical
cases; data not shown). When everyone receives treatment, using
three first-line therapies results in a 49% reduction in failed
treatments (and clinical cases) compared with a single first-line
therapy. Note that, as we move from a single first-line therapy to two
and three first-line therapies, the optimal treatment fraction f*
moves rightward on the graph, which means that, as we add more
first-line therapies into our treatment strategy, we will be able to
treat a higher proportion of clinical cases without ‘‘overtreating’’
and driving the evolution of resistance too strongly.

In comparing the useful therapeutic lives of treatment strategies
in Fig. 4 Upper, it becomes apparent that MFT strategies have
longer UTLs, because they use more drugs. A more relevant
comparison measures the UTL per drug rather than the UTL of the
treatment strategy as a whole; at s � 0.1 and f � 0.6, for example,
the per-drug UTL for a strategy of three first-line therapies is 3.32
years (one-third of the 9.95-year UTL of an MFT strategy with
three therapies), whereas the per-drug UTL of a single first-line
therapy is 3.54 years. Thus, it would seem optimal to use our single
first-line therapies in sequence for a total UTL of 3.54 � 3 � 10.62
years. However, this simple calculation obscures the fact that when
n drug therapies are used in sequence, their total UTL cannot be
calculated by summing the UTLs of the individual therapies. In our
example, using the drugs in sequence, the UTL of the first therapy
would be 3.54 years, the second therapy 2.92 years, and the third
therapy 2.83 years, for a total UTL of 9.29 years.

When using therapies in sequence, there is a particular aspect of
parasite ecology that reduces the UTL of each subsequent therapy,
even when there is no cross-resistance among the drugs. During the
first treatment period, resistant parasites emerge and spread by
competing for hosts with drug-sensitive wild-type parasites. During
the second treatment period, parasites resistant to therapy 2
compete against a mixture of wild types and resistants left over from
the previous treatment period, hence they emerge into a less

Fig. 3. In these graphs, si � 0.1, �i � 10�5, F � 1.0, and the model was run for

20 years; f � 0.6 for the solid lines and f � 0.0 for the dashed lines. Left shows the

clinical outcomes DPC (black lines) and NTF (red line) as a function of R0. Right

shows the time to emergence (T.05) and time to fixation (T.95) as a function of R0;

the dashed red line shows the equilibrium value of 	 when there is no treatment

or resistance.Red linescorrespondtoredaxis labels. ForhigherR0,	 is lower; thus,

there is less selection pressure favoring the resistants and their time to emer-

gence/fixation is longer. This relationship breaks down for very low R0 where the

parasites’ generation time is long and evolution is slow. The inner axis labels

correspond to NTF (red numbers) and years until resistance reaches 5% or 95%

(black numbers).
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Fig. 4. In these graphs, R0 � 3, �i �

10�5, F � 1.0, and the model was run

for 20 years. The black line corresponds

to MFT with three drugs, the medium

gray line to MFT with two drugs, and

the light gray line to a single first-line

therapy. Note that using more thera-

pies has a bigger advantage when the

cost of resistance is higher. Fig. S2 in SI

Appendix shows the bottom row with-

out discounting.
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competitive environment where they increase in frequency more
quickly and cause high levels of treatment failure more rapidly.
During the third treatment period, parasites resistant to therapy 3
emerge into an even less competitive environment than was present
at the beginning of period 2, and treatment failure arrives even
more quickly. From the perspective of parasite ecology, each
resistant strain degrades the mean fitness of the parasite population
(see Fig. 5) and constructs a niche in which it is easier for
subsequent resistant strains to invade (41, 42). This fundamental
ecological interaction among drug-resistant strains in a parasite
population is a key reason why MFT strategies outperform drug-
cycling strategies.

In fact, compared with MFT policies, cycling policies have two
fundamental disadvantages that can be understood in the light of
evolution. Organisms evolve in response to environmental pres-
sures, and cycling policies are more likely to create environments
favorable to drug-resistant malaria in two ways. First, cycling lowers
the mean fitness of the parasite population more quickly than MFT,
thereby creating a less competitive environment that is more
conducive to the invasion and spread of new resistant types. Second,
from the perspective of the pathogen, cycling creates a less tem-
porally variable environment that makes resistance evolution easier
in the long term, as described by Bergstrom et al. (16). These are two
distinct ecological-evolutionary effects: at the beginning of the
second cycling period, newly emerged resistant parasites can invade
and spread easily, because (i) they can count on a temporally
invariable environment for some time; and (ii) they encounter weak
competition, the mean fitness of the parasite population having
been degraded in the previous cycling period.

To compare the health outcomes of cycling policies and MFT
strategies, we ran our model for 20 years over the parameter set P

and compared MFT with 10 variants of cycling policies (see SI

Appendix); one such cycling strategy approximates the status quo
pattern of switching drugs and is described here. For 75.1% of
parameter combinations, MFT outperformed a cycling policy that
switched first-line therapies at 10% treatment failure with a 1-year
switch delay. Quantitatively, the NTF values under both strategies
were quite close, within 5% of each other for 64.4% of parameter
values. For 20.9% of parameter values, MFT enjoyed a 5–10%
advantage, and for 9.5% of parameter values, MFT enjoyed a
�10% advantage. For 3.6% of parameter values, MFT had a
5–10% disadvantage, and for 1.6% of parameter values, a �10%
disadvantage. The most noticeable quantitative benefit of using
multiple first-line therapies over cycling strategies was the increased
delay in time to resistance emergence and treatment failure, which
ranged from 2- to 4-fold (for equal �i). The longest delay in
resistance emergence is achieved under an MFT policy with an even
drug distribution, but some diversity is better than no diversity (see
Fig. 6). For example, using three drugs in a 50/25/25 ratio almost
doubles the time until resistance reaches 5%, compared with a
single first-line therapy. Note in Fig. 6 that time to emergence is
determined primarily by the frequency of the most frequently used
drug.

In addition to the clinical and drug lifespan benefits of deploying
multiple first-line therapies, MFT strategies may enjoy some oper-
ational advantages, because they do not incur the economic costs
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Fig. 6. Results of 1,000 simulations, with R0 � 3, �i � 10�5, f � 0.6, si � 0.1, and

F � 1.0, where the drug distribution of three drugs was chosen randomly. Certain

drug distributions are highlighted in Upper. Lower shows the same simulations

plotted against the frequency of the most used drug. Drug diversity is measured

as � pi � log pi, where pi is frequency of use of drug i. The 60/20/20 strategy has

the same diversity measure as the 45/45/10 strategy, but resistance arrives sooner

under the former because one drug has such a high frequency of use.

Fig. 5. Differences between MFT and cycling strategies; ‘‘adaptive cycling’’

means switching drugs at 10% treatment failure with a 1-year switch delay.

Here, R0 � 3, si � 0.1, �i � 10�5, f � 0.6, and F � 1.0. Top is as in Fig. 2. Middle

tracks the total level of resistance in the parasite population (triple resistants

count as fully resistant, double resistants count as 2/3 resistant, and so on);

light gray lines show the ‘‘total resistance’’ line from the other two columns for

comparison. Bottom tracks the parasites population’s mean fitness, calculated

in the absence of drug treatment, with a fitness of one assigned to drug-

sensitive parasites; the light gray lines show the mean-fitness line from the

other two columns for comparison.
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involved in switching therapies and maintaining a high level of
surveillance (43). Moreover, cycling strategies are sensitive to the
length of the cycling period and implementation delay (Fig. S1 in
SI Appendix), and they may incur a higher level of treatment failure
than noted in the modeling if there are delays in phasing out a failed
first-line therapy. Note that the MFT strategy analyzed in this study
is a nonadaptive strategy. In the context of the same surveillance
networks available to cycling strategies, the clinical benefits of an
adaptive MFT over cycling strategies could be much greater.

An important challenge in applying this type of theoretical work
is that we will usually not know the de novo mutation rate to
resistant strains (�i) or the resistant types’ fitness cost of resistance
(si), and we may have to rely on our best judgment to make a
conservative but effective recommendation. Moreover, not all
factors in malaria control—imperfect compliance with treatment
regimens, delays in implementing policy switches, recommended
use of second-line drugs, likely use of cheap but ineffective drugs
such as chloroquine, varying levels of surveillance available to
detect resistance or treatment failure–have been included in our
model; model-influenced regional recommendations should take
into account regional variations in drug-use patterns and malaria
epidemiology.

The pharmacokinetic/pharmacodynamic (PK/PD) aspect of ma-
laria treatment has also been omitted from the model presented
here. In reality, some drugs remain in the system for days, whereas
others linger for weeks. When designing MFT strategies, drugs with
longer half-lives should be used more sparingly to distribute the
drugs as uniformly as possible in the parasites’ environment; this
way, the parasite has the lowest probability of encountering the
same drug twice in a row. More importantly, the increasing use of

ACTs makes it critical to analyze the effects of mismatched
half-lives in combination therapies (4). The short half-life of the
artemisinin component in ACTs may make it possible to use
multiple ACTs in an MFT strategy, even though each therapy
contains an artemisinin derivative. These suggestions should be
evaluated with detailed within-host PK/PD modeling.

Our results suggest an important general principle for malaria
treatment that holds across a broad parameter range and in other
model formulations: compared with a single first-line therapy,
multiple first-line therapies reduce total clinical cases and failed
treatments, significantly delay resistance emergence and treatment
failure, and slow resistance evolution once resistance emerges.
Extrapolating our conclusions to use of multiple ACTs may yield
even stronger results. Because resistance to the nonartemisinin
partner drugs typically arises and spreads quite easily, the evolution
of artemisinin resistance is likely to be followed in rapid succession
by the evolution of resistance to all ACTs. Thus, in theory, the
optimal strategy would be to deploy all available ACTs to reduce
selection pressure on the partner drugs; protecting the partner
drugs may extend the useful therapeutic lives of all ACTs. As new
drugs are deployed, and as we are able to assess the levels of use in
different countries, we should look toward identifying loca-
tions with drug-use patterns that would allow us to quantify the
population-wide benefits of using multiple first-line therapies to
treat malaria infections.
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