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Abstract. The evolution of resistance to antimicrobial drugs is a major pub-
lic health concern. Mathematical models for the spread of resistance have
played an important role as a conceptual tool for understanding how and why
resistance emerges and spreads. Here, we present a new, general mathematical
model for the spread of resistance within a population that accounts for several
biologically plausible effects of antimicrobial drug use. Except for the evolution
of de novo resistance, the model is mathematically identical to Lotka-Volterra
competition. The simple model is extended to include the spread of resistance
among several patches, and the evolution of multi-drug resistance. The models
are used to illustrate some simple ideas about the spatial spread and spatial
control of resistance and the evolution of multi-drug resistance.

1. Introduction

General concern about the evolution of resistance to antimicrobial drugs is
growing because the frequency of resistant infections has increased [27, 35]. Dur-
ing the 1980s and 90s chloroquine resistance was responsible for a global rise in
malaria mortality [28, 35]. At the same time, vancomycin-resistant enterococci
(VRE) spread epidemically among hospitalized patient populations [9, 27, 29].
The spread of VRE, called “superbugs” because they were naturally resistant or
had acquired resistance to all approved antimicrobials, was accompanied by wide-
spread fear that methicillin-resistant Staphylococcus aureus (MRSA) would acquire
vancomycin resistance genes from VRE to create another, more virulent superbug,
vancomycin-and-methicillin-resistant S. aureus (VRSA), an event that occurred in
2003 [11]. VRE and the fear of VRSA led to the alarmist speculation that we might
be entering a “post-antimicrobial era”.

Meanwhile, the rate that new antimicrobials drugs are being approved has
declined [34]. Although two new drugs were approved for gram-positive bacterial
infections (including enterococci and S. aureus) in 1999 and 2000, and a handful
of new antimicrobial agents are in the pipeline, these new agents do not represent
novel mechanisms of action. For now, most malaria, enterococcal, and S. aureus
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infections are treatable, but the high frequency of resistance will inevitably lead to
some treatment failure when patients take the wrong antimicrobial agent. However,
excess morbidity and mortality caused by resistant infections and the slow response
of the drug industry to a superbug suggest our efforts to keep up with evolution
of resistance through pharmaceutical innovation may be futile and that part of the
solution is better management of existing antimicrobials. The underlying cause of
the evolution of resistance is the use of antimicrobial drugs – drug pressure creates
a niche for resistant bacteria in a population that is being treated [8].

The evolution of resistance, defined broadly as the change in the frequency of
resistance, involves the emergence of novel resistance and subsequent spread – two
different problems with their own conceptual problems. The evolutionary origins
of novel resistance are related to mutation and within-host selection [15]. Spread
is related to human-to-human transmission, the movement of humans, inter- and
intra-specific microbial competition, and other aspects of microbial ecology and
host immunity. Emergence and spread are complex phenomena that occur within
bacterial populations, within and among humans. Such phenomena are difficult to
understand and analyze without the use of mathematical models [10, 22, 26, 36].
Indeed, VRE and anti-malarial resistance have initiated a new era of research on the
population dynamics of drug resistance [2, 3, 4, 5, 7, 15, 17, 18, 24, 25, 30, 31]

Once resistance has emerged, public health responses should begin to shift
focus from preventing emergence to reducing transmission and limiting spread. The
measures to prevent the origins of new resistant pathogens and the spread of existing
resistance types may not always be the same. Novel or de novo resistance, defined
as the emergence of resistance by mutation within a population that was sensitive,
encompasses one basic process for eukaryotes, but it can happen in two or more ways
in prokaryotes [20]. The dominant view of the origins of antimicrobial resistance
is that antimicrobials select for pre-existing mutations. High-level resistance may
require several mutations, and since each one is rare, the process probably occurs
step by step in partially resistant pathogens. Thus, the persistence of these partially
resistant pathogens in a population plays a role in the origins of resistance [16].
This perspective is sufficient for Plasmodium and other eukaryotic pathogens, but
bacteria are different [20]. In some cases, high-level resistance has emerged in
bacteria when genes were acquired from other bacteria [11]. Novel resistance from
the horizontal transmission of high-level resistance genes requires exposure to the
genes as well as selection. Thus, the emergence of high-level resistance in one
bacteria species is related to the prevalence of resistance in other species or microbial
communities [30].

The spread of resistance from host to host is responsible for the majority of
resistant infections. Resistant strains can spread in a population, just as their
sensitive relatives do, once they have evolved, as long as they are not inhibited
from infecting a host by the presence of another genotype. Thus, the underlying
ecological model for the evolution of resistance is intra-specific competition [2, 7].
The spread of resistance can also play a role that is similar to mutation. As a
result of drug chemotherapy, an infection will clear or recrudesce as an infection
that remains drug-sensitive if no resistant mutant is present. Exposure to resistant
strains just before or during drug treatment can “seed” a resistant infection that
will respond as if it were pre-existing mutant. Thus, horizontal transmission of
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resistant pathogens is as important to understand as within-host selection. Here,
we develop simple models that capture some of these effects.

The amount of antimicrobials used in a population is important, but it is equally
important to understand where those antimicrobials are used and how humans move
around. Our main focus is on the spread of resistance in structured populations,
such as hospitals or networks of rural towns, building on the efforts of others to
understand the spread and persistence of resistance to antimicrobial drugs in bac-
teria [31]. We have developed models that focus on the spread of resistance, or
epidemiological models [20]. Possible candidate organisms for applying these mod-
els include Plasmodium falciparum, gram positive bacteria that are leading causes
of hospital-acquired infections, enterococci, and S. aureus. Despite the enormous
differences between these different pathogens, there are important similarities in
their epidemiology. The immune responses are relatively weak, persistence times
are relatively long, and asymptomatic infections are far more common than symp-
tomatic infections. Thus, the pathogen dynamics can be usefully understood with
SIS models. One important difference is that the use of antimicrobials to treat
VRE and MRSA tends to cause more “collateral damage” by selecting for resis-
tance in non-target bacteria. This is also true for some anti-malarials, but many
anti-malarial drugs are used only for infections with plasmodia.

These models are intended to illustrate some general principles that affect the
emergence and spread of resistance. We begin by formulating a new, general model
for the spread of resistance in well-mixed populations. Next, we extend the model to
a spatial context and focus on the spread of resistance among populations. Finally,
we consider resistance to two drugs in space, and illustrate some interesting phe-
nomena. The results should be interpreted with circumspection since antimicrobial
policy will also be affected by many other concerns.

2. Well-mixed populations

We begin with a model for the spread of resistance in a well-mixed population,
and derive equations for the spread of resistance. We assume that individuals are ei-
ther uninfected, infected by drug-sensitive pathogens, or infected by drug-resistant
pathogens. This model posits the strongest form intra-specific competition: no
individuals are simultaneously infected with both drug-sensitive and drug-resistant
“strains”. Let U denote the proportion of patients who are uninfected, W the
proportion who are infected by a drug-sensitive strain (wild-type), and X the pro-
portion who are colonized by a drug-resistant strain. We assume the population is
constant, so U = 1 − X − W .

We assume that populations are locally well-mixed. Let β denote the con-
tact parameter for directly transmitted pathogens and vectorial capacity for vector
transmitted pathogens. Let λ denote the rate at which infections clear. With no
further assumptions, the dynamics are described by the following coupled differen-
tial equations:

(2.1)
Ẇ = βWU − λW

Ẋ = βXU − λX.

The superdot denotes the derivative with respect to time.
Equations (2.1), are only a common starting point for understanding the evo-

lution of resistance. Total prevalence of the pathogen, P = W + X is described by
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a simple equation:

(2.2) Ṗ = βPU − λP

The basic reproductive number for the pathogen is R0 = β/λ, and if R0 > 1, preva-
lence approaches the equilibrium 1 − 1/R0. There is no selection for or against
resistance in Eqs. 2.1 because drug-sensitive and drug-resistant pathogens are com-
petitively equivalent.

Intra-specific competition is modified by antimicrobial drug use and by antimi-
crobial resistance. Let ρ denote the rate that people are prescribed antimicrobials,
and let ξ denote the fraction of the population under chemo-prophylaxis, defined
as having concentrations of the drug that favor drug-resistant strains over drug-
sensitive ones (see Appendix 1). Here, treatment and prophylaxis are not directly
related to infection status. The assumption reflects the fact that most people who
carry VRE, MRSA, or malaria infections are asymptomatic. Moreover, VRE and
MRSA carriers are often treated for other infections, and selection for VRE or
MRSA is a collateral effect. In areas where malaria is hyperendemic, malaria is of-
ten presumed to be the underlying cause of fever, so anti-malarials are often taken
without respect to infection status. For malaria, new treatment programs being
contemplated deliver anti-malarials to pregnant women and children, without re-
spect to their infection status [32, 33]. For these reasons, we have not made the
prescription rate a direct function of infection status.

Antimicrobial use and antimicrobial resistance fundamentally change intra-
specific competition in one or more of the following ways:

(1) Treatment and Clearance of Drug Sensitive Pathogens: Infections
clear in those who are undergoing chemo-prophylaxis. Total clearance
rates increase to (λ + νξ)W , where νξ is always less than or equal to
ρ, the antimicrobial prescription rate, since if all infections are cleared
instantaneously upon starting treatment, then νξ = ρ. (The constraint
helps to avoid errors in Eqs. 3 when considered in isolation from Eqs. 14).

(2) Chemo-prophylaxis of Susceptibles: An obvious effect of taking an-
timicrobials is that uninfected individuals are protected from infection
by drug-sensitive strains. The incidence of infection with drug-sensitive
strains is lowered by chemo-prophylaxis to βWU(1 − ξ)

(3) Chemo-prophylaxis of Drug-Sensitives: A secondary effect may be
that those who are colonized by drug-sensitive strains do not transmit as
efficiently while they are chemo-prophylaxed: shedding from prophylaxed
individuals occurs at the rate ζξ. Shedding from susceptibles occurs at the
rate (1−ξ+ζξ)W shed. Combined with chemo-prophylaxis of susceptibles,
the incidence of infection with drug-sensitive strains is lowered further to
β(1 − ξ)(1 − ξ + ζξ)WU . If susceptibles don’t shed at all, then incidence
is β(1 − ξ)2WU .

(4) Biological Cost of Resistance – Clearance: A biological cost of re-
sistance is often incorporated into these models by assuming a higher rate
of spontaneous clearance for resistant pathogens, (φ + λ)X.

(5) Biological Cost of Resistance – Super-infection: A biological cost
of resistance may allow drug-sensitive strains to displace drug-resistant
ones. This allows individuals to convert directly from resistant to sensitive
without ever clearing an infection. We assume that this only occurs when
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neither host is chemo-prophylaxed. We further assume that the resident
has an inherent advantage; the probability of conversion, per contact, is
q ≤ 1. Thus, resistant hosts become sensitive at the rate q(1− ξ)(1− ξ +
ζξ)βXW .

(6) Transfer of Resistance Factors or Super-infection under Chemo-

prophylaxis: Drug-sensitive bacteria may acquire resistance factors from
drug-resistant ones by gene transfer, for example, on a plasmid. We as-
sume that this transfer is most likely if the host is being treated with
antimicrobial drugs. Acquisition of resistance factors would be indistin-
guishable from super-infection during or just before chemo-prophylaxis
that allows drug-resistant pathogens to displace drug-sensitive ones. We
assume that this occurs through ordinary contact, and that the probabil-
ity of conversion by either mechanism is r. Thus, people change status
from sensitive to resistant at the rate rξβXW .

(7) Novel Resistance: The use of drugs may favor the evolution of resis-
tance within a host, either through mutation or through the inter-specific
transfer of high-level resistance factors. People change status from infected
with drug-sensitive to drug-resistant pathogens at the rate cξW .

This list may not include all the advantages or disadvantages of resistance, but
it describes several plausible mechanisms. In sum, antimicrobial drug use provides
an advantage to resistant strains by reducing transmission and increasing clearance
rates of drug-sensitive pathogens. This is countered by a biological cost of resistance
that leads to more rapid clearance of resistant bacteria. Finally, drug use can change
the rate that people change status without becoming uncolonized through super-
infection, from infected with resistant to sensitive, or vice versa.

Table 1. State variables and parameters for Eqs. 2.3 and Eqs. 3.1.

U Proportion of the population that is uninfected

W Proportion that is infected with sensitive pathogens

X Proportion that is infected with resistant pathogens

β Contact parameter

ξa Proportion of the population that is prophylaxed by antibiotic a

ν The proportion of prophylaxed populations that clear infections

λ The rate that infections are naturally cleared

φ Cost of resistance, higher clearance

q, r Probability of displacement by superinfection

ζ Reduced transmission by prophylaxed susceptibles

c Probability that treatment leads to de novo resistance

1/σi Average time spent in ith population

ψi,j Proportion of immigrants to ith population that come from the

jth population
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Incorporating all these effects gives the more complicated equations describing
local competition under some specific level of antimicrobial drug use:

Ẇ = β(1 − ξ)(1 − ξ + ζξ)WU + (q(1 − ξ)(1 − ξ + ζξ) − rξ) βXW

− (λ + νξ)W − cξW

Ẋ = βXU − (q(1 − ξ)(1 − ξ + ζξ) − rξ)βXW − (λ + φ)X + cξW.

(2.3)

A slightly more formal derivation of these equations is provided in Appendix 1.
Importantly, in the new environment the basic reproductive numbers for each

type change, depending on the amount of antimicrobial drug that is used.

R0,w =
β(1 − ξ)(1 − ξ + ζξ)

λ + νξ

R0,x =
β

λ + φ

(2.4)

We denote the basic reproductive number in the new environment with a different
script and a subscript for each strain, to distinguish it from the basic reproductive
number of the wild-type in an untreated population R0

One could consider the susceptible population as a resource, and treat the dy-
namics as an example of “resource-based competition.” The competitive dynamics
would be entirely determined by the basic reproductive number for each strain in a
particular treatment environment. R0,w and R0,x. The pathogen with the highest
R0,s would also have the highest carrying capacity and would draw the susceptible
population below the other strain’s threshold level and prevent it from invading.

Super-infection makes this sort of analysis incorrect because coexistence is de-
termined by the ability of each strain to invade the other at carrying capacity,
and each strain is able to use the other pathogen as a resource. For example, the
resistant strain can invade all susceptibles as well as sensitives, U +rξW , while per-
sistence times, the average waiting time until a strain is either cleared or replaced,
are shorter, approximately 1/(λ+φ+q(1−ξ)(1−ξ+ζξ)W ). Similarly, the resource
for sensitive strains invading a population is U + q(1− ξ)2X, and persistence times
are approximately 1/(λ + νξ + rξX). Thus, it is no longer possible to say which
pathogen will be dominant by simply finding the one with the highest R0,s.

Goldilocksian Coexistence. The dynamics of this system are transparent
once Eqs 2.3 are rewritten in the following way:

Ẇ = rwW [1 − (W + αwX) /Kw] − cξW

Ẋ = rxX [1 − (X + αxW ) /Kx] + cξW
(2.5)

In Eqs 2.5, the parameters are recast as maximum growth rates, carrying capaci-
ties and competition coefficients (Table 2). In other words, ignoring the background
evolution of novel resistance (i.e. assuming c = 0), the underlying dynamics are
mathematically equivalent to the well-understood Lotka-Volterra competition equa-
tions.

Ignoring the evolution of novel resistance (i.e. c = 0) antimicrobial drug use
reduces the prevalence of sensitive pathogens from 1 − 1/R0 to Kw, if resistance
never appears. If Kx − αxKw > 0, resistance will eventually be able to invade
once it appears. If resistance is already present at a low frequency, the frequency
will not begin to increase until antimicrobials reduce the prevalence of the sensitive



ANTIBIOTIC RESISTANCE IN STRUCTURED METAPOPULATIONS 219

Table 2. The coefficients when Eqs. 2.3 are rewritten as Lotka-
Volterra competition equations.

i = w x

ri β(1 − ξ)(1 − ξ + ζξ) − νξ − λ β − φ − λ

Ki 1 − 1/R0,w 1 − 1/R0,x

αi 1 − q +
rξ

(1 − ξ)(1 − ξ + ζξ)
1 + q(1 − ξ)(1 − ξ + ζξ) − rξ

0 5 10 15

Anatomy of a Resistance Epidemic

Time in Years

W
+

X

1 −
1

R0

Kw

KxαxW < Kx

W+X

WX

X° > 0X° < 0

Figure 1. The anatomy of an epidemic of resistance. Before an-
timicrobials, the prevalence of a sensitive phenotype is assumed to
be at equilibrium, 1 − 1/R0. Once drug use starts, at time t = 0,
the prevalence of sensitive bacteria declines and would eventually
reach a new equilibrium, Kw, if resistance never invaded (the dot-
ted line shows W without competition from X). Once the preva-
lence of sensitive bacteria decline below a threshold (W < Kx/αx),
the prevalence of resistance (dot-dash, X) begins to increase (i.e.

Ẋ > 0) and approaches a new equilibrium, Kx . The frequency
of resistance is initially rare, but in this case, it eventually goes to
fixation and drives the sensitive bacteria extinct (dashed lines show
W with competition). Total prevalence (W + X, solid dark line)
drops when the antimicrobial is initially introduced, but eventually
rebounds. The parameters and initial conditions are the following:
q = r = λ = 1/500 days, φ = λ/5, ξ = 3%, ζ = 0, ν = 0.1, R0 = 5,
W (−365) = Kw, and X(−1) = 0.001 or 0.

phenotype to W < Kx/αx. If Kw − αwKx < 0, the resistant types will increase to
a new equilibrium Kx and the sensitive phenotypes will be eliminated (Figure 1).

Coexistence requires a Goldilocksian balance:

(2.6) αx < Kx/Kw < 1/αw



220 DAVID L. SMITH, MACIEJ F. BONI, AND RAMANAN LAXMINARAYAN

0 1% 2% 3% 4% 5%

0

0.5

1

1.5

2

2.5

Coexistence, After 30 years

ξ

φ
λ

No Resistance

100% Resistance

<0.1%
5%

50%

95%
> 99.9%

0 1% 2% 3% 4% 5%

0

0.5

1

1.5

2

2.5

Equilibrium

ξ

φ
λ

No Resistance

100% Resistance

Figure 2. Coexistence (light gray) depends on a Goldilocksian
balance between the rate of antimicrobial drug use and the cost of
resistance, but when generation times (1/λ) are long, two strains
can coexist for a very long time. The colors indicate the frequency
of resistance–the darker, the higher frequency of resistance (see the
key). Here, we’ve plotted the frequency of resistance after 30 years,
and the equilibrium.

It is possible to translate this into a formula related to the proportion of the pop-
ulation under chemo-prophylaxis, ξ, but the resulting expressions are complicated.
Crudely summarized, if selection pressure is too strong, sensitive phenotypes will
be eliminated. If selection pressure is too weak, resistance will remain absent.
Coexistence does not occur unless selection pressure is just right (Figure 2).
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In natural populations, resistance has rarely become fixed. One explanation
for coexistence is that the biological cost of resistance is extremely high. Some
circumstantial evidence undermines this hypothesis, for a very high biological cost
would be relatively easy to measure. A high biological cost of resistance has been
reported relatively rarely [1]. One possible reason for a low biological cost of resis-
tance is that compensatory mutations can arise that minimize the biological cost
of resistance [21].

An alternative hypothesis is that coexistence is a transient phenomenon–resistance
has had insufficient time to become fixed (Figure 2b). This sort of transient re-
sistance also requires that the rate of antimicrobial use be delicately balanced,
although the constraints are not quite as Goldilocksian (Silverlocksian?).

Another mechanism that could also explain coexistence is that prescription
rates adjust to the frequency of resistance, for example, patients switch to another
drug or avoid treatment when resistance becomes very frequent, coexistence would
be more robust. An alternative explanation, explored below, is population hetero-
geneity.

3. Resistance in Structured Populations

The rate of antimicrobial drug use and local transmission can vary, with im-
portant implications for the dynamics and control of resistance. To understand
epidemics in structured populations, we extend the previous model to link several
locally well-mixed populations. Let subscript i denote the ith population, and let
1/σi denote the average length of stay in the ith population. We have assumed
that the size of each local population remains constant, so every individual who
leaves one population is replaced by an arrival from elsewhere. Let ψi,j denote the
proportion of all immigrants (sensitive or resistant) to population i that come from
population j. The migration fractions are implicitly related to the relative popula-
tion sizes and the migration rates between each pair of populations (see Appendix
2).

We assume that transmission rates (βi) and the proportion chemo-prophylaxed
(ξi) can vary from place but other parameters are fixed, no matter where a person
resides at the time. The local dynamics are described by the following:

Ẇi =βi(1 − ξi)
2WiUi +

(

q(1 − ξi)
2
− rξi

)

βiXiWi

− νξiWi − λWi − cξiWi − σi(Wi −
∑

j

ψi,jWj))

Ẋi =βiXiUi −
(

q(1 − ξi)
2
− rξi

)

βiXiWi

− (φ + λ)Xi + cξiWi − σi(Xi −
∑

j

ψi,jXj).

(3.1)

Spatial Coexistence. Coexistence between sensitive and resistant pheno-
types is relatively easy when migration rates are very low and antimicrobial use
is heterogeneous. For example, consider a two-patch model where no antimicro-
bials are used in patch one, but antimicrobial use in patch two is high enough to
fix resistance. Coexistence is trivial if the patches remain separated. With high
migration rates, the population behaves as if well-mixed, with respect to coexis-
tence. The amount of migration required to undermine this spatial coexistence is
surprisingly small in the two-patch model (Figure 3).
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Figure 3. Spatial heterogeneity in antimicrobial use promotes co-
existence when migration rates are low. Here, the equilibria are
plotted as a function of the migration rate. For these parameters,
the population is approximately well-mixed when migration occurs
on approximately the same time scale as clearance.

An alternative explanation is that the human population is composed of many
subgroups that vary in the amount of time spent in the prophylaxed location. For
example, the elderly population spend more time, on average, than the non-elderly
in hospitals and long-term care facilities [31]. Those who are frequently hospitalized
play a role in the spread of antimicrobial resistant hospital-acquired infections that
is analogous to those who are most sexually active in spreading sexually-transmitted
diseases.

The lessons learned from hospital-acquired infections may be played out in
structured populations where the sub-populations have a spatial relationship. A
simple illustration of the principle is the frequency of resistance on an array (Fig-
ure 4). To keep the point as simple as possible, we allow two patches to be treated,
but we vary the distance separating the treated patches. When the two treated
patches are close together, individuals who have acquired resistance in one patch
are more likely to enter the other, where they continue to transmit. Thus, the
closer two patches are to one another, the more they amplify each other. A similar
phenomenon happens at the edge, where we assume that no individuals leave at
the edges so individuals are more likely to return to the treated patch. To put it
simply, the prevalence of antimicrobial resistance in one subpopulation is affected
by the rate of antimicrobial use in surrounding populations [31].

The spread of resistance in one relatively simple spatial network was described
as a part of a study in Tanzania – the prevalence of resistance in two treated areas,
and in surrounding areas provide some evidence that these principles are at work
in real populations [12]. Enzi, an untreated town between two treated towns had a
higher frequency of resistance than the treated towns, or than any of the untreated
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Figure 4. The frequency of resistance is higher when some hosts
spend more time in populations where antimicrobials are heav-
ily used. In the top graph, we show the frequency of resistance
simulated on an array where two treated patches surrounded by
untreated patches were separated by the indicated distance (ver-
tical transects). When the patches are close to one another, hosts
infected with resistant phenotypes are more likely to re-enter a
treated patch. When the patches are near the edge, a similar
phenomenon occurs because of a reflecting boundary condition.
Curiously, resistance overall is lower when the two patches are ex-
actly adjacent or at the very edge because the effects of spillover
on the adjacent, untreated populations are limited. The model is
available upon request.



224 DAVID L. SMITH, MACIEJ F. BONI, AND RAMANAN LAXMINARAYAN

From Clyde DF & Shute GT, 1957

Kilulu, 57%

Enzi, 60%

Mkuzi Area, 41%

Lusanga, 8%Muheza, 5%

Mtindiro, 5%

N =

N =

N =

N =N =

N =

77

111

316

11339

58

8

2.7

2.6

5.6

2.8

1 Mile

Simulated

Kilulu, 45%

Enzi, 61%

Mkuzi Area, 75%

Lusanga, 2.2%Muheza, 9%

Mtindiro, 2.5%

8

2.7

2.6

5.6

2.8

Figure 5. The frequency of resistance in Enzi (left) and in a sim-
ulation (right). Dosing with pyrimethamine in two cities (black
background) led to high frequency of resistance (grey). Surround-
ing, untreated cities (black background) generally had much lower
resistance, suggesting limited spread. The exception was Enzi,
situated between the two treated populations, where the high
frequency of resistance suggested spread of resistant phenotypes
from the flanking treated populations. No resistance was found in
Pongwe 12 miles east (N = 48), or in a northwest belt 5–9 miles
away (N = 65). The gray lines show the roads connecting the
towns at the time of the study. right) Some of these patterns can
be reproduced by trial and error. The model is available upon
request.

towns nearby (Figure 5, left). By trial and error, we found migration parameters
and treatment frequencies that generated prevalence patterns that were close to
those in the study (Figure 5, right). Try as we might, we could not find parameters
that made the frequency of resistance for untreated Enzi higher than the treated
cities flanking it. Mkuzi is a large and heterogeneous area. It is possible that
treatment rates were very high in those parts of Mkuzi that were near Enzi but
lower further away, but resistance was reported for the aggregated Mkuzi popu-
lation. This is entirely speculative, but a relatively simple structured model does
approximately reproduce the observed patterns.

The same principles apply to more complicated networks of interacting pop-
ulations, including the flows of people on landscapes, the flow of patients among
health-care institutions, and the flow of patients within a hospital.

4. Multi-drug Resistance in Structured Populations

The lessons from structured populations have an important applications an-
timicrobial drug policies. The previous results suggest the decision of what drug
to recommend will depend, in part, on the frequency of resistance and antimicro-
bial resistance in neighboring populations. A primary concern here is the evolution
of multi-drug resistance (MDR). Recent models for the evolution of MDR have fo-
cused on developing strategies to prevent the rapid evolution of MDR-strains [6, 7].
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While some of these models have managed to simplify the dimensionality of such
systems substantially, it is not always clear that such reductions in model size are
desirable and that lower-dimensionality models are good approximations of the true
models. To illustrate the complexity of MDR-models, we present a summary of the
variables necessary to model a human-bacterial interaction with two antimicrobials.
In the appendix, we describe some common approximations. Finally, we present
some results on antimicrobial prescribing strategies in a structured population.

To model the different chemo-prophylaxis scenarios with two antimicrobials,
we need to break up the host population into four population classes. We call our
two antimicrobials x and y, and we denote by subscripts which type of chemo–
prophylaxis a host is undergoing, if any. For example, a host colonized by the
wild-type and currently taking antimicrobial y will be in population class Wy. We
use the letter z to denote both antimicrobials; hosts in the class Wz are prophylaxed
by antimicrobials x and y simultaneously. Subscript n indicates no prophylaxis.

To determine infection status, we need a further sub-division into five popu-
lation classes: one class for uncolonized individuals, and four classes for the four
possible types of resistance in the bacteria. Hosts in the class U are currently un-
colonized; hosts in W are colonized by the wild-type strain; hosts in X and Y are
colonized by a strain resistant to antimicrobial x or y, respectively; and, hosts in
the population class Z are colonized by a bacterial strain resistant to both antimi-
crobials x and y. Five classes for infection status and four classes for prophylaxis
status result in an unwieldy 20 population classes (see Table 3). The full model
with 20 differential equations can be seen in Appendix 3. Below we present a
lower-dimensional, collapsed version of this model.

Table 3. Asterisks (*) denote individuals who are effectively pro-
phylaxed. These hosts cannot shed/transmit their pathogen; their
microbial populations can evolve resistance if these hosts come into
contact with another host infected with a strain resistant to their
antimicrobial.

proph. by proph. by proph. by

col. strain / proph. state not proph. ab x ab y abs x and y

none Un Ux Uy Uz

wildtype, ab-sensitive Wn Wx (*) Wy (*) Wz (*)

resistant to ab x Xn Xx Xy (*) Xz (*)

resistant to ab y Yn Yx (*) Yy Yz (*)

resistant to abs x and y Zn Zx Zy Zz

We set q = 0, so that we do not have reversion to sensitives via a super-
infection mechanism, c = 0 so that there is no evolution of novel resistance, and
r = 1 so that drug-resistant strains can always invade prophylaxed hosts colonized
by a sensitive population. We once again compartmentalize our host population by
their treatment status. We say that a fraction ξn are not prophylaxed, a fraction ξx

are prophylaxed by antimicrobial x, a fraction ξy are prophylaxed by antimicrobial
y, and a fraction ξz are prophylaxed by both antimicrobials; ξn + ξx + ξy + ξz = 1.
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This method allows us to make the same ξ-like approximation that is presented in
Appendix 1.

Dimensionality reduction in our dynamical system relies on collapsing the in-
fected classes into forces of infection and the susceptible classes into effective suscep-
tible populations as has been done elsewhere [13, 14, 23]. The forces of infection
are defined as

(4.1)

Λw = βWn

Λx = β(Xn + Xx)

Λy = β(Yn + Yy)

Λz = β(Zn + Zx + Zy + Zz).

Let Qs be the class susceptible to the strain s. Then,

(4.2)

Qw = Un

Qx = Un + Ux + Wx + Yx

Qy = Un + Uy + Wy + Xy

Qz = Un + Ux + Uy + Uz + Wx + Wy + Wz + Xy + Xz + Yx + Yz

are the four effective susceptible classes as perceived by each of the four pathogenic
strains. After some rearranging and approximating (Appendix 3), the 8 classes
yield the closed dynamical system

(4.3)

Q̇w = − Qw(Λw + Λx + Λy + Λz)

+
λ

β

(

Λw +
λ + φ1

λ

ξn

ξn + ξx

Λx +
λ + φ1

λ

ξn

ξn + ξy

Λy +
λ + φ2

λ
ξnΛz

)

Q̇x = − Qx(Λx + Λz) − Qw(Λw + Λy)

+
λ

β

(

Λw +
λ + φ1

λ
Λx +

λ + φ1

λ

ξn

ξn + ξy

Λy +
λ + φ2

λ
(ξn + ξx)Λz

)

Q̇y = − Qy(Λy + Λz) − Qw(Λw + Λx)

+
λ

β

(

Λw +
λ + φ1

λ

ξn

ξn + ξx

Λx +
λ + φ1

λ
Λy +

λ + φ2

λ
(ξn + ξy)Λz

)

Q̇z = − QzΛz − QyΛy − QxΛx − QwΛw

+
λ

β

(

Λw +
λ + φ1

λ
Λx +

λ + φ1

λ
Λy +

λ + φ2

λ
Λz

)

Λ̇w =βQwΛw − λΛw

Λ̇x =βQxΛx − (λ + φ1)Λx

Λ̇y =βQyΛy − (λ + φ1)Λy

Λ̇z =βQzΛz − (λ + φ2)Λz,

where φ1 is the cost of resistance (i.e. higher clearance) of the singly-resistant strains
X and Y , and φ2 is the cost of resistant of the doubly-resistant strain Z.

These equations have six free parameters (we can scale out λ), and they can
serve as a useful guide as to how the microbial population structure would respond
to various antimicrobial-prescribing strategies. The equations also allow us to ap-
proximate basic reproduction ratios for the four strains, relative to that for the
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wild-type in an untreated population, R0 = β/λ. In a different environment de-
fined by some treatment rates, the basic reproductive numbers of the pathogens
are:

R0,w = R0ξn,

R0,x = R0(ξn + ξx)
λ

λ + φ1

,

R0,y = R0(ξn + ξy)
λ

λ + φ1

,

R0,z = R0(ξn + ξx + ξy + ξz)
λ

λ + φ2

= R0

λ

λ + φ2

.

(4.4)

Notice that the basic reproductive number for each type is lower than R0, but
the highest R0,s varies, depending on the amount and type of antimicrobial being
used. The biological cost of resistance is assumed to increase with the number of
drugs to which the pathogen is resistant. Countering this cost, the population that
is susceptible to infection increases with the number of antimicrobials to which a
strain is resistant. Since MDR strains are resistant to every antimicrobial, they can
infect any individual. These values underline the important effect prophylaxis and
treatment can have on the rates of spread of the antimicrobial-sensitive pathogens.

MDR Dynamics in Space. We now consider the spread of resistance in
two equally sized patches, or spatial locations (named 1 and 2) to illustrate how
antimicrobial prescribing strategies and resistance patterns vary in the simplest
spatial model. Instead of eight state variables we now need sixteen; we call them
Qw,1, Λy,2, etc. Our Q-equations will now look like

(4.5) Q̇w,1 = −Qw,1(Λw,1 + Λx,1 + Λy,1 + Λz,1) +
λ

β
(· · · ) + σ(Qw,2 − Qw,1).

Similarly, our Λ-equations will be

(4.6) Λ̇y,1 = βQy,1Λy,1 − (λ + φ1)Λy,1 + σ(Λy,2 − Λy,1).

Note that now we will have eight parameters (six free parameters) describing
prescribing frequencies: ξn1, ξx1, ξy1, ξz1 in patch 1 and ξn2, ξx2, ξy2, ξz2 in patch 2.

Treatment strategies for MDR-models specify what fraction of the population
is treated, as well as how the different antimicrobials will be distributed among
treated hosts. Some common multi-drug treatment strategies are (1) load balancing
(also called 50-50 treatment [7] and mixing [6]), where half of the treated hosts are
given antimicrobial x and the other half are given antimicrobial y; (2) combination
therapy, where all treated hosts are given both antimicrobials simultaneously; and
(3) sequential treatment or antimicrobial cycling, where hospitals treat all hosts
with one antimicrobial for a given period of time, then switch to the second for
some time, switching back and forth between two or cycling through three or more.
Single-drug treatment is of course also an option. In the two-patch model, we will
consider the case where antimicrobial x is used at one location and antimicrobial y
in the other; this can be thought of as “load balancing in space”.

Sequential treatment is believed to be the poorest strategy [6, 7], in that it
drives the evolution of double-resistants the most quickly. Load-balancing and
combination therapy are slightly better, though combination therapy puts more
“direct” favorable selection pressure on the double-resistants, while a load-balancing
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strategy puts indirect selection pressure on the double-resistants. Load-balancing
in space has not yet been studied. We present two simple examples of spatial
treatment regimes and their resulting bacterial strain structures.

Load Balancing in Space. We consider a scenario of two hospitals where
patients sometimes get transferred from one to the other, or two cities between
which individuals frequently migrate. Patch 1 chooses to use antimicrobial x to
treat all its patients, while patch 2 uses antimicrobial y.

When there is no migration between the two patches (hospitals), single-drug
use will drive the evolution of single-resistants. If treatment levels are high enough,
strain X will fix in patch 1 and strain Y will fix in patch 2. In this scenario,
when we allow individuals to migrate between patches, these fixation dynamics can
change. From the perspective of hosts in the W - and Z-classes, the patch these
hosts occupy is irrelevant since treatment in both patches is effective against hosts
infected with the wild type, and ineffective against hosts infected with the double-
resistant. However, hosts infected with a strain resistant to only one antimicrobial
see the two patches quite differently. In patch 2, for example, strain Y will dominate
and eventually fix; if a host from patch 2 carrying a strain resistant to antimicrobial
y migrates to patch 1, his potential susceptible pool changes from all hosts in patch
2 to a fraction ξn1 of the hosts in patch 1. The fraction ξx1 of hosts in patch 1
who are prophylaxed by antimicrobial x will not be able to contract an infection
from the new immigrant since his strain is susceptible to the antimicrobial x. This
means that migration is detrimental to the single-resistant strains.

This effect can be seen in Figure 6. Here we chose β = 2, λ = 1, ζ = 0, φ1 = 1/4,
and φ2 = 1/2, so that in the absence of antimicrobial treatment, the strains’ basic
reproduction ratios are R0,w = 2, R0,x = R0,y = 8/5, and R0,z = 4/3. In patch
1, we designate the single-drug treatment regime via ξn1 = 2/3 and ξx1 = 1/3;
in patch 2, we have ξn2 = 2/3, and ξy2 = 1/3, so that 2/3 of all hosts remain
non-prophylaxed while 1/3 receive single-drug treatment with the drug depending
on their location. Under these treatment frequencies, the replacement numbers is
patch 1 are

R0,x = 8/5 > R0,w = R0,z = 4/3 > R0,y = 16/15,

and in patch 2,

R0,y = 8/5 > R0,w = R0,z = 4/3 > R0,x = 16/15.

When the R0-values are ordered in this way, it becomes clear why migration is un-
favorable to the single-resistants. They have the highest basic reproduction ratio in
one patch and thus increase in relative frequency in this patch, but upon migration
they have the lowest reproduction ratio in the other patch and are out-competed
by the other three strains.

In Figure 6, we see the slow increase and then decrease in frequency of the
single-resistant strains. The remarkable result in this simple model setup is that
the addition of spatial structure causes a population-wide reversion to the wild-
type strain, a demonstration that load balancing in space can reduce resistance.
Without spatial structure, these parameter values would allow coexistence of all
strains.
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Figure 6. Load Balancing in Space. Dashed line represent the
frequency of the wild type, solid lines the frequency of single-
resistants, and the thick line represents the frequency of double-
resistant strains (strength of line indicates strength of resistance).
In all figures, β = 2, λ = 1, φ1 = 1/4, φ2 = 1/2, ξn1 = ξn2 =
2/3, ξx1 = ξy2 = 1/3. In the first row, there is no migration be-
tween patches and each spatial location undergoes selection for a
particular single resistant: the single-resistant to antimicrobial x
flourishes in patch 1, while the single-resistant to antimicrobial y
flourishes in patch 2. In the second and third rows, the patches
are coupled via a migration parameter, and the single-resistants
can no longer flourish since upon migration they observe a higher
prophylaxed population. Wild type strains fix for both σ = 0.15
and σ = 0.30.

Combination Therapy and Load Balancing. The previous example seems
like a rational choice of prescribing strategies if each hospital has the luxury of
choosing either drug for its patients. However, if each patch harbors both types
of resistant hosts, as well as doubly-resistant hosts, treatment decisions will have
to be made on a per-patient basis and both drugs will have to be used in each
patch. In this scenario, combination therapy and within-patch load balancing are
better options [6, 7]. We examine the consequences of implementing a combination-
therapy strategy in one patch and a load-balancing strategy in the other.
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Figure 7. Combination Therapy vs. Load Balancing in space.
Dashed line represent the frequency of the wild-type, solid lines
the frequency of single-resistants, and the thick line represents the
frequency of double-resistant strains. In all figures, β = 2, λ =
1, φ1 = 1/4, φ2 = 1/2, ξn1 = ξn2 = 2/3. In patch 1 (left column)
we have ξx1 = ξy1 = 0, ξz1 = 1/3. In patch 2 (right column) we
have ξx1 = ξy1 = 1/6, ξz1 = 0. We see that as coupling between the
patches is increased, the combination-therapy scheme is unaffected,
but the microbial population structure under the load-balancing
regime does in fact change, and it begins to resemble the population
structure under combination therapy. In all plots, for both patches,
25% of hosts are infected at equilibrium.

We use the same parameter values for transmission, recovery, and costs of
resistance as in the first example. In patch 1, we represent combination therapy by
ξn1 = 2/3 and ξz1 = 1/3. In patch 2, we have load balancing: ξn2 = 2/3 and ξx2 =
ξy2 = 1/6. Under combination therapy in patch 1, we have R0,w = R0,z = 4/3 and
R0,x = R0,y = 16/15, so the wild types and double-resistants coexist. Under load
balancing in patch 2, all strains have an R0 = 4/3 and all coexist. The first row of
Figure 7 shows the strain frequencies in each patch when there is no migration.

Migration homogenizes the population structures in each patch. Because there
are more double-resistants in patch 1, there is a net migration of hosts infected with
the double-resistant from patch 1 to patch 2. Likewise, there is a net migration of
hosts infected with a single-resistant from patch 2 to patch 1.
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Double-resistants moving into a load-balancing scheme thrive and provide the
resident single-resistants with more opportunity to acquire a second resistance
mechanism. As migration increases, most of the single-resistants in patch 2 evolve
into double-resistants. Single-resistants moving from load balancing to combination
therapy undergo a reduction in R0; they migrate to a new environment where they
are the least fit and cannot increase in frequency.

As coupling between the patches becomes stronger, the direct selection pressure
for double-resistants under combination therapy overwhelms the balance achieved
by using only single-drug treatments in patch 2. The bacterial strain structure un-
der combination therapy is unaffected by immigration. The strain structure under
load balancing, however, becomes destabilized by the arrival of double-resistants,
and it begins to resemble the strain structure under combination therapy.

5. Discussion

Here, we have presented and explored some new mathematical models for the
spread of resistance in a well-mixed population that explicitly consider the window-
of-opportunity for resistance created by chemo-prophylaxis. The use of antimicro-
bials selects for resistance within a host, but if the rate of use is high enough, a
resistant strain can sustain a chain of transmission within a population. Antimi-
crobial drug use does this by either reducing the proportion colonized by sensitive
bacteria or by making it possible for resistance to invade sensitive strains directly
through superinfection or the transfer resistance elements. The among-host com-
ponent of selection and associated transmission are generally considered to be more
important than the novel resistance due to within-host component of selection in
setting the frequency of resistance within a population.

In most places, the average rate of antimicrobial drug use is too low to favor
resistance, but since the rate of drug use is heterogeneous, resistance is favored in
some places that are effectively sources for resistance. Thus, from the perspective
of resistance, population is structured into a set of sources and sinks. Source-sink
dynamics favor coexistence because some people spend more time in sources than
others [30].

Sources create a local spillover effect, where the prevalence of resistance in
nearby populations is always higher. Two sources that are near one another amplify
each other. The corollary is that it is better to use different antimicrobials than
your neighbors. At the very least, management decisions for antimicrobial resistant
pathogens should consider what nearby populations do. Even better, the decisions
should be planned and coordinated at regional scales with the purpose of making
antimicrobial use as heterogeneous as possible.

For MDR, the implications are more serious. Other papers have emphasized
the importance of making drug use as heterogeneous as possible [6, 7, 19]. Here,
we have shown that load balancing can be effectively done by using different antimi-
crobials in different hospitals or cities that interact through migration. Moreover,
because of chemo-prophylaxis, load balancing has certain advantages over combi-
nation therapy, at least when it comes to selection for resistance at the population
level. In combination therapy, the total levels of both antimicrobials increase and
select for both single-resistant mutants as well as the MDR mutant. In load balanc-
ing, total selection pressure is reduced, and the single-mutants are more common,
guaranteeing that at least one treatment option is available.
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Our models are meant to illustrate some general principles and point out some
intriguing possibilities, and should not be interpreted directly as policy recommen-
dations. Antimicrobial policy must also be determined by other concerns, including
the interests of the patient, the different efficacies of the antimicrobials, whether an-
timicrobials have a broad or narrow spectrum, economic considerations, and other
factors.
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7. Appendices

Appendix 1. Let ρ denote the rate that antimicrobial prescription begins,
and let 1/δ denote the duration of the protective effects. We subdivide a popula-
tion into the states of chemo-prophylaxed or not, denoted with subscripts x or n.
We further subdivide the population into those who are uncolonized, infected by
sensitive phenotypes, or infected by resistant phenotypes. Also, let U = Un + Ux,
W = Wn + Wx and X = Xn + Xx. The following six equations describe the
dynamics for well-mixed populations:
(7.1)

U̇n = −βWnUn − βXUn +λWn + λXn + φXn −ρUn + δUx

U̇x = −βXUx +λWx + λXx + φXx + νWx +ρUn − δUx

Ẇn = βWnUn + qβWnXn −λWn −ρWn + δWx

Ẇx = −rβXWx −λWx − νWx +ρWn − δWx

Ẋn = βXUn − qβWnXn −λXn − φXn −ρXn + δXx

Ẋx = βXUx + rβXWx −λXn − φXx +ρXn − δXx

In the variables U , X, and W , the dynamics are

(7.2)

U̇ = −βWnUn − βXU + λ(W + X) + φX + νWx

Ẇ = βWnUn + qβWnXn − rβXWx − λW − νWx

Ẋ = βXU − qβWnXn + rβXWx − λX − φX
,

Assuming that the rate of drug use is constant and that the pharmacodynamics are
fast, the proportion of some class that is protected is given by the equation

(7.3) ẏx = ρ(y − yx) − δyx.

And we use the equilibrium, assuming ẏx is fast relative to ẏ:

(7.4) ȳx =
ρ

ρ + δ
y.

We let ξ = ρ/(ρ + δ), and Wx = ξW , Wn = (1 − ξ)W , Un = (1 − ξ)U , and
Xn = (1 − ξ)X. We substitute these into (7.2), and write down the much simpler
system of equations (2.3). We leave it to others to show when this approximation
fails.
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Appendix 2. The equations describe a closed population where local popu-
lation sizes are also constant, but not necessarily equal. Let Ni denote the size of
the ith population; the net emigration is σiNi.

Let ψi,j denote the fraction of immigrants to the ith population that come
from population j, and

∑

j ψi,j = 1. Let ωi,j denote the fraction of emigrants from
population i that go to population j. To balance migration:

(7.5) ψi,jσiNi = ωi,jσjNj .

Appendix 3. The full model with 2 antimicrobials, 4 prophylaxed states, and
5 colonization states is described below via 20 differential equations describing the
dynamics of the 20 population classes described in Table 2. In the equations below,
λs,e is the recovery rate of strain s in environment e. These will be simplified later.

U̇n = −βWnUn − β(Xn + Xx)Un − β(Yn + Yy)Un − β(Zn + Zx + Zy + Zz)Un

+λw,nWn + λx,nXn + λy,nYn + λz,nZn

U̇x = −β(Xn + Xx)Ux − β(Zn + Zx + Zy + Zz)Ux

+λw,xWx + λx,xXx + λy,xYx + λz,xZx

U̇y = −β(Yn + Yy)Uy − β(Zn + Zx + Zy + Zz)Uy

+λw,yWy + λx,yXy + λy,yYy + λz,yZy

U̇z = −β(Zn + Zx + Zy + Zz)Uz

+λw,zWz + λx,zXz + λy,zYz + λz,zZz

Ẇn = +βWnUn − λw,nWn

Ẇx = −β(Xn + Xx)Wx − β(Zn + Zx + Zy + Zz)Wx − λw,xWx

Ẇy = −β(Yn + Yy)Wy − β(Zn + Zx + Zy + Zz)Wy − λw,yWy

Ẇz = −β(Zn + Zx + Zy + Zz)Wz − λw,zWy

Ẋn = +β(Xn + Xx)Un − λx,nXn

Ẋx = +β(Xn + Xx)(Ux + Wx) − λx,xXx

Ẋy = −β(Yn + Yy)Xy − β(Zn + Zx + Zy + Zz)Xy − λx,yXy

Ẋz = −β(Zn + Zx + Zy + Zz)Xz − λx,zXz

Ẏn = +β(Yn + Yy)Un − λy,nYn

Ẏx = −β(Xn + Xx)Yx − β(Zn + Zx + Zy + Zz)Yx − λy,xYx

Ẏy = +β(Yn + Yy)(Uy + Wy) − λy,yYy

Ẏz = −β(Zn + Zx + Zy + Zz)Yz − λy,zYz

Żn = +β(Zn + Zx + Zy + Zz)Un − λz,nZn

Żx = +β(Zn + Zx + Zy + Zz)(Ux + Wx + Yx) + β(Xn + Xx)Yx − λz,xZx

Ży = +β(Zn + Zx + Zy + Zz)(Uy + Wy + Xy) + β(Yn + Yy)Xy − λz,yZy

Żz = +β(Zn + Zx + Zy + Zz)(Uz + Wz + Xz + Yz) − λz,zZz

In these classes we have eliminated the flow of hosts to prophylaxis (ρ), and from
prophylaxis (δ). We will simply assume that the host population is divided into
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four sub-groups undergoing varying degrees of prophylaxis: a fraction ξn is not
prophylaxed, a fraction ξx is prophylaxed by antimicrobial x, a fraction ξy is pro-
phylaxed by antimicrobial y, a fraction ξz is prophylaxed by antimicrobials x and
y.

Ignoring the recovery dynamics momentarily, these 8 classes defined by (4.1)
and (4.2) allow us to write our system down in 10 equations:

(7.6)

Q̇w = −Qw(Λw + Λx + Λy + Λz)

Q̇x = −Qx(Λx + Λz) − Qw(Λw + Λy)

Q̇y = −Qy(Λy + Λz) − Qw(Λw + Λx)

Q̇z = −QzΛz − QyΛy − QxΛx − QxΛx

Λ̇w = βQwΛw

Λ̇x = β(Qx − Yx)Λx

Λ̇y = β(Qy − Xy)Λy

Λ̇z = βQzΛz + βXyΛy + βYxΛx

Ẋy = −Xy(Λy + Λz)

Ẏx = −Yx(Λx + Λz).

If we add in the recovery terms, we can no longer express the system in 10-
dimensions, unless we make a similar approximation as in the one drug case, namely
that the fractions ξi express the relative frequencies in the 5 types of disease classes
(uncolonized, infected with wild type, infected with resistant to x, infected with
resistant to y, infected with resistant to x and y). Making this approximation, we
see that Zx, for example, can be expressed as ξx β−1Λz. And,

Xn ≈
ξn

ξn + ξx

1

β
Λx.
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Then, our approximation yields the differential equations:

(7.7)

Q̇w = − Qw(Λw + Λx + Λy + Λz)

+
λ

β

(

Λw +
λS

λ

ξn

ξn + ξx

Λx +
λS

λ

ξn

ξn + ξy

Λy +
λD

λ
ξnΛz

)

Q̇x = − Qx(Λx + Λz) − Qw(Λw + Λy)

+
λ

β

(

Λw +
λS

λ
Λx +

λS

λ

ξn

ξn + ξy

Λy +
λD

λ
(ξn + ξx)Λz

)

Q̇y = − Qy(Λy + Λz) − Qw(Λw + Λx)

+
λ

β

(

Λw +
λS

λ

ξn

ξn + ξx

Λx +
λS

λ
Λy +

λD

λ
(ξn + ξy)Λz

)

Q̇z = − QzΛz − QyΛy − QxΛx − QxΛx

+
λ

β

(

Λw +
λS

λ
Λx +

λS

λ
Λy +

λD

λ
Λz

)

Λ̇w = βQwΛw − λΛw

Λ̇x = β(Qx − Yx)Λx − λSΛx

Λ̇y = β(Qy − Xy)Λy − λSΛy

Λ̇z = βQzΛz + βXyΛy + βYxΛx − λDΛz

Ẋy = − Xy(Λy + Λz) − λAXy

Ẏx = − Yx(Λx + Λz) − λAYx,

where λS = λ+φ1 and λD = λ+φ2 are the recovery rates (in all environments where
antimicrobials have no effect) for the single-resistant and for the double-resistant,
respectively. λA is the recovery rate for a host undergoing effective antimicrobial
treatment. Since Ẋy < 0 and Ẏx < 0, we simply say that these two classes are
zero, and we approximate the full system with the remaining eight equations; this
is system (4.3) in the text.
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