GLOBAL ANTIBIOTIC RESISTANCE PARTNERSHIP (GARP) INAUGURAL MEETING

Antibiotic Resistance: Perspectives from non-GARP Countries - GHANA

Dr. John H. Amuasi (MBChB, MPH)

Head, R&D Unit

Komfo Anokye Teaching Hospital

Kumasi, Ghana

University of Witwatersrand and Resources for the Future (RFF)

Stellenbosch, South Africa, 8th – 9th February 2010

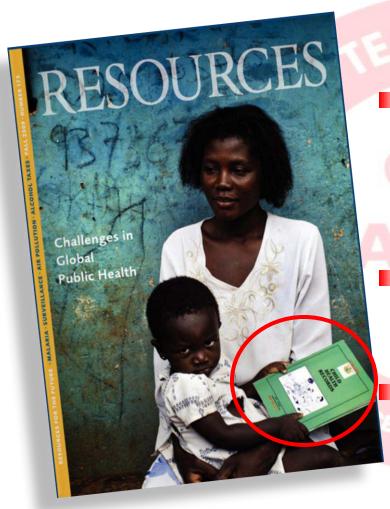
PRESENTATION OUTLINE

- Introduction to Ghana
- Introduction to KATH
- Healthcare in Ghana
- Procurement and distribution of medicines
- Antibiotics and resistance in Ghana
- Issues to consider

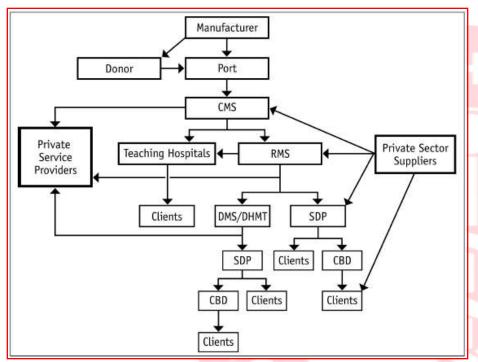
INTRODUCTION TO GHANA

- Total land area: 238,533 sq. Km. slightly smaller than Oregon, USA.
- Population 23,887,812. Total population life expectancy: 60.1 years. Total population literacy: 57.9% (65% for ages 15+).
- Ten regions. Decentralization of government extends to the district level with 110 districts.
- HPI-1 value of 28.1%, ranked 89th among 135 countries, just below India and just ahead of Malawi & Uganda.

KOMFO ANOKYE TEACHNIG HOSPITAL (KATH), KUMASI http://www.kathhsp.org



- Located in the Ashanti region.
 Formed in 1955 & provides
 tertiary health care to over half of
 the population of Ghana.
- 2nd largest hospital in Ghana: over 1,200 beds, 450 doctors and 800 nurses.


- Also serves WA sub-region & now has an ultra modern A&E centre.
- IPC policy and interdepartmental team in place.
- R&D unit promotes research and partnerships (http://www.kathhsp.org/rd.html)

HEALTHCARE IN GHANA

- < 60% of the population (92% in urban and 45% in rural areas) has access to health services.
- Malaria together with ARIs, diarrhoea, malnutrition, anemia, and measles, account for about 50% of all childhood admissions to health facilities and for 30% of childhood deaths.
- Health care system is controlled by the MoH (policy formulation) under which the GHS (implementing arm) operates.
 - Total GDP: 15.1 bn US\$. Approx. 6.8% of GDP spent on health care a little over **US\$35 per capita.** Development partners support over 50%. NHIS since 2005 funded by 2.5% NHIL. 5

PROCUREMENT AND DISTRIBUTION OF MEDICINES

- Informal private sector (close men). Can sell any number of tabs/caps including singles depending on ability to pay.
- Greater Accra and the Ashanti region together have 837 of the country's 964 pharmacies (2003).

- EML and STG in place since 1998 and reviewed periodically, strictly adhered to in the public sector, but private sector is questionable.
- 3-layer supply chain: CMS, RMS, and SDPs plus the transportation network.

Private hospitals, pharmacies, chemical seller's shops, and private maternity homes provide additional interface between medicines and patients. Local manufacturers exist.

ANTIBIOTICS IN GHANA

- Open market policy of importation of drugs. Influx of antibiotics into Ghanaian market from both local and foreign manufacturers and increased OTC abuse. Popularly called "topae" (bomb!).
- Commonly used are chloramphenicol (for typhoid, meningitis etc), ampicillin and penicillin based others (for wound infections).
- Small 1998 study showed local and foreign manufacturers to be producing quality drugs. (Helegbe et al 2009)
- Often prescribed without lab test.

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (I)

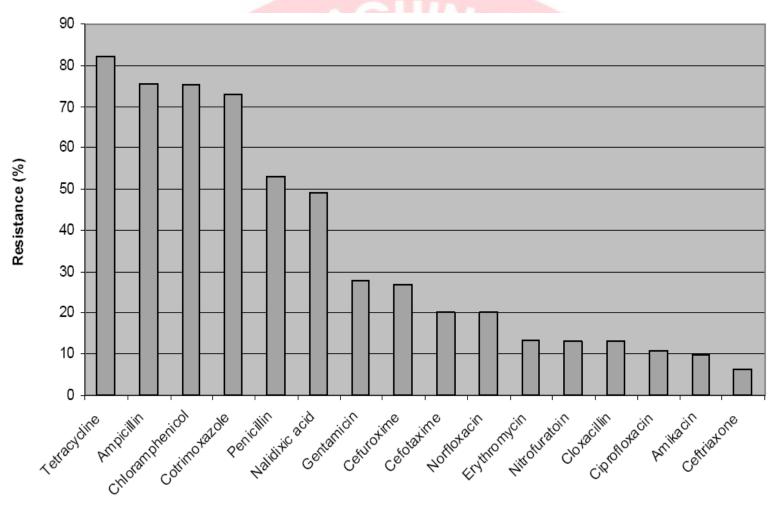
- No active surveillance system in place to date.
- Most comprehensive data is from a study published in 2003 sponsored by the Ghanaian-Dutch collaboration for Health R&D. (Newman, Frimpong et al)
- Sentinel-type, carried out in 9 out of the 10 regions in Ghana. 2 teaching hospitals, 7 regional hospitals, & 2 district hospitals.
- Aim was to determine the prevailing bacterial agents involved in infections in Ghana, and the current incidence of antibiotic resistance of these agents.

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (II)

- Total of 5,099 bacterial isolates from various clinical specimens of patients, and data collected over 1 yr. Bacteria mainly Gram negative; *E. coli* commonest, followed by *Staph. aureus, Klebsiella spp. and P. aeruginosa,* making up 56% of the organisms studied.
- Isolates identified by culture and biochemical reactions, and Kirby Bauer method used to test susceptibility to 16 antimicrobial agents.
- MIC of some of the multiple resistant isolates of epidemiological significance was also determined using the E-test.

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (III)

Numbers of bacteria isolates from various clinical sites


Bacterial agent	N	ws	Blood	Urine	Sputum	Hvs	Aspirate	Csf	Stool	Others
Escherichia coli	1105	128	85	662	35	116	1	3	2	(73)
Staphylococcus aureus	788	138	381	60	16	32	24	2	0	(135)
Klebsiella spp.	536	76	126	127	90	5	2	2	0	(108)
Pseudomonas aeruginosa	441	211	28	40	50	6	2	2	0	(102)
Proteus spp.	397	189	18	42	19	19	3	0	0	(107)
Non typhoidal Salmonella	247	5	209	11	0	0	3	0	15	(4)
Enterobacter spp.	275	62	78	7	58	23	2	3	0	(42)
Salmonella typhi	109	0	101	2	0	0	0	1	3	(2)
Streptococcus spp	127	14	6	21	12	49	1	1	0	(23)
Citrobacter spp.	120	35	10	17	20	18	2	0	0	(18)
Acinetobacter spp.	88	31	30	4	13	1	0	1	0	(8)
Streptococcus pneumoniae	51	0	8	0	4	0	1	35	0	(3)
Neisseria meningitidis	11	0	0	0	0	0	0	11	0	(0)
Neisseria gonorrhoeae	17	0	0	8*	0	1	0	0	0	(8)
Shigella spp.	4	0	1	0	0	0	0	0	3	(0)
Haemophilus influenzae	4	0	0	0	0	0	0	3	0	(1)
Vibrio cholerae	1	0	0	0	0	0	0	0	1	(0)
Total	4321	889	1081	1001	317	270	41	64	24	(634)

N = total isolates; ws = wound swab; hvs = high vaginal swab; csf = cerebrospinal fluid * isolated from urethral specimen

⁽⁾ bacteria isolated from specimens other than those listed are in bracket

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (IV)

Prevalence of resistance among antimicrobial drugs

Antimicrobial drug

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (V)

Prevalence of multiple drug resistance among bacterial agents

Bacterial agent	Total isolates	No. of mdr isolates	%mdr isolates
Pseudomonas aeruginosa	441	100	22.7
Other Streptococcus spp.	127	100	78.7
Acinetobacter spp.	88	57	64.8
Citrobacter spp.	120	78	65.0
Streptococcus pneumoniae	51	4	7.8
Escherichia coli	1105	768	69.5
Enterobacter spp.	275	166	60.4
Salmonella typhi	109	68	62.4
Non tyhoidal Salmonella	247	149	60.3
Klebsiella spp.	536	309	57.6
Proteus spp.	397	222	55.9
Nesisseria gonorrhoea	17	2	11.8
Staphylococcus aureus	788	333	42.3

Mdr = multiple drug resistant

RESISTANCE TO ANTIMICROBIAL DRUGS IN GHANA (VI)

Minimum inhibitory concentration (MIC) of bacterial isolates

Bacterial agent	N	Antimicrobial drug	RANGE OF MIC (ug/ml)		
Staphylococcus aureus	*18	Cefuroxime	0.25-4.0 (* 8 isolates > 256)		
	18	Gentamicin	0.19-24.0 (3 isolates >256)		
Salmonella typhi	*10	Cefuroxime	1.5-6.0 (* 2 isolates > 256)		
	10	Ciprofloxacin	0.004-0.094		
	10	Gentamicin	0.19-1.5		
Non typhoidal Salmonella	*14	Cefuroxime	3.0-48.0 (* 5 isolates > 256)		
	14	Ciprofloxacin	0.008-0.38 (1 isolate >32)		
	14	Gentamicin	0.25-4.0		
Vibrio cholerae	1	Ciprofloxacin	0.094		
	1	Cefuroxime	12.000		
	1	Ampicillin	64.000		
Shigella spp	1	Ciprofloxacin	0.064		

13

SEVERAL LIMITATIONS

- Biochemical identification identical but discrepancies among hospitals in sensitivity results.
- C/S not done on a regular basis due to lack of basic inputs (petri dishes, media etc.)
- Inability to isolate fastidious organisms in some regional hospitals.
- Anaerobes not collected due to cost of Gaspak etc.

RESISTANCE AGAINST ANTI-TB DRUGS USED IN GHANA

- 2,064 patients with new cases of pulmonary TB nation-wide enrolled in a cross-sectional study. September 2001 to December 2004. (Gyapong, Ohene-Adjei et al)
- 76.5% of isolates susceptible to all drugs tested, 14.7% monodrug resistant, 8.7% multi-or polydrug resistant to combinations.
- Overall prevalence of any drug resistance: 23.5%
- Highest level of resistance was against streptomycin, followed by isoniazid. Lower resistance to rifampin, pyrazinamide, and thiacetazone.

WHAT TO DO? AS USUAL...

- Standardized collection and testing methods nation-wide.
- System of distribution of trained technologists and technicians.
- Re-evaluation of the indications for the use of amp, tet, chloramp and cotrim in view of the high levels of resistance observed.
- Lab-based national sentinel survey of susceptibility and drug use. Surveillance program.

ISSUES TO CONSIDER

- Our presence here is evidence of the crucial nature of this problem.
 Policies alone are not the solution.
- Weigh the problem using "government scales" and tip balance appropriately.
- Borrow from climate change approach? Advantage: few naysayers.
- Thorough understanding of both formal and informal healthcare delivery system is needed.
- Upstream and downstream efforts needed and solutions worked into health system.

...The expertise and capacity developed in these initial five countries will become the core of a wider partnership... (GARP website)

