Product Variety in the Anti-Malarial Supply Chain

Prashant Yadav

Antimalarial Treatment Strategies: Getting the Most from Malaria Drugs

30 March-3 April, 2008 Pestana Kruger Lodge, Kruger National Park, South Africa

Acknowledgements

This work has gained tremendously based on insights, discussions, earlier models of the following and rigorous versions of this paper may appear as joint work:

Ramanan Laxminarayan	Resources for the Future
Yehuda Bassok	 University of Southern California

Introduction

- The use of multiple first-line therapies (MFT) delays the emergence of drug resistance
- Under MFT several therapies are available (in the public or private market) and prescribers and/or end-patients determine which therapy to use
- What are the incentives of the supply chain to choose multiple variants of the same product ?
- How do these vary in the public and private sector?

Public sector

Levers exist to influence policy towards MFT

Anti-malarial variety in the public sector supply chain

- Very few countries with multiple first line treatments
- High cost of maintaining more than one first line treatment
 - Buffer/safety stock required to maintain the same level of service goes up by a factor of \sqrt{n}
 - Full substitutability between first line therapies can eliminate this need for additional safety stock
 - Substitution leads to confusing treatment guidelines
 - Pricing and bargaining power disadvantage with suppliers
 - Higher cost of training program staff for MFT
 - Managing synchronized procurement cycles for n > 1 products is a planning nightmare for already weak procurement systems

MFT and supply chain safety stock requirements

International Logistics Program

Yadav : Variety in the Anti-Malarial Supply Chain

International Logistics Program

Realities and solutions

- Higher quantity purchased does not lead to lower procurement price for AIDS, TB and Malaria drugs
 - Evidence in Yadav and Lai 2007, *What Explains Prices of Pharmaceuticals Purchased by Developing Countries?*
 - Similar evidence in Waning et al. 2007 & 2008
- Voluntary pooled procurement will further reduce any price differentials
- The crux of the safety stock problem is poor consumption data and demand forecasting.
 - If that is resolved, the base quantity in the square root relationship itself is small
- Procurement systems need to be strengthened to handle synchronized multiple product procurement

Private sector

Driven by patient choice and assortment stocking incentives

Variety in the private sector

- Patients and prescribers are heterogeneous in "taste"
- Anti-malarials with attributes closer to their desired attributes are purchased more
- Therefore, the private market has an incentive to offer a broad variety of anti-malarials to better cover the possible range of "tastes"
- There are direct and indirect costs of variety for the supply chain, higher costs of stockouts and overstocking impose an implicit cost on variety
- Trade-off: "breadth vs. depth" of assortment

Positive consumption externalities in purchase behavior

- Before purchasing any particular anti-malarial, the patient/prescriber has a prior valuation of its (expected) performance based on advertising, word-of-mouth, reference price, or general experience.
- Upon taking the drug, the patient/prescriber forms a judgment (perception) of the drug's efficacy, and changes her valuation of the drug based on it.
- It is this posterior valuation that determines the subsequent anti-malarial choice: We term this as valuation carryover
- Over time patients/prescribers increasingly trust their own experiences with the drug which makes it more difficult to influence choice at a later point in time.

Variety in the supply chain: A tale of four anti-ulcer products

Consumption Externalities and Diffusion in Pharmaceutical Markets: Anti-Ulcer Drugs Ernst R. Berndt, Robert S. Pindyck and Pierre Azoulay, MIT Sloan School Working Paper 2000

MIT ZARAGOZA

International Logistics Program

Modeling choice and assortment

- Anti-malarial products are perceived as bundles of characteristics and individual preferences are defined on these characteristics rather than on the products themselves
- Demand is generated by an individual-level locational consumer choice model based on Hotelling (1929)
- The products in the category are horizontally differentiated, i.e., they differ by characteristics that do not affect quality or price
- Preference spectrum : the space of all possible combinations of levels of attributes, where each point corresponds to a potential product location in the category
- Each patient is characterized by the specification of her most preferred anti-malarial in the preference spectrum, defined as the good that represents the optimal transfer of characteristics to her

Choice model details

- A patient *i* with most preferred good x_i associates a utility U_{ij} to a product *j* in the assortment
- $U_{ij} = Z p g(|x_i b_j|)$
- Z is a positive constant representing the surplus associated with taking an antimalarial. p is the price of product
- Patients choose the variant with the highest utility among the set $\{U_j : j \in S \cup \{0\}\}$
- A no-purchase option, denoted j = 0 occurs if the patient does not derive positive utility from any option
- Denote by k the number of patients who choose not to purchase any antimalarial from the assortment

Assortment optimization problem

The supply chain solves the following optimal assortment selection problem Let $A_i = \{1, 2, ..., i\}$ for $1 \le i \le n$.

Then, there exists an $S^* \in \{A_1, \dots, A_n\}$ that maximizes supply chain profits Π_{SC} Define S_{SO}^* to be the long run socially optimal level of variety

<u>Theorem 1</u>: k is decreasing in the cardinality of S^*

Higher variety in the anti-malarial space improves the fraction of those who seek treatment for malaria

<u>Theorem 2</u>: $S^* \neq A_n$

The supply chain may choose not to cover the entire market in its optimal assortment, i.e., it may leave some segments of the attribute space uncovered by any anti-malarial

Will AMFm naturally lead to more variety?

- The size of the optimal assortment is not monotonic in the input cost of the product c
- A decrease in c expands the region of profitable products for the supply chain
- A decrease in c increases the supply chain's expected profit of the more popular products proportionately more than other products.
- A decrease in c increases the service levels of products, and thus, decreases the expected gain from substitution between products
- While the first effect is a drive towards more variety, the other two lead to less variety
- As a result, the size of the optimal assortment can increase or decrease in c

