### Drugs and resistance

Chris Plowe

### University of Maryland School of Medicine

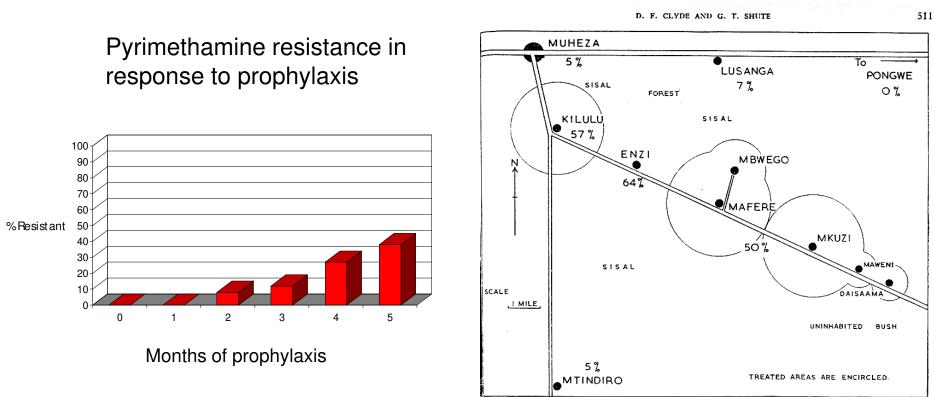




Mechanisms of resistance and implications for Multiple First-line Therapies

Some approaches to deterring resistance

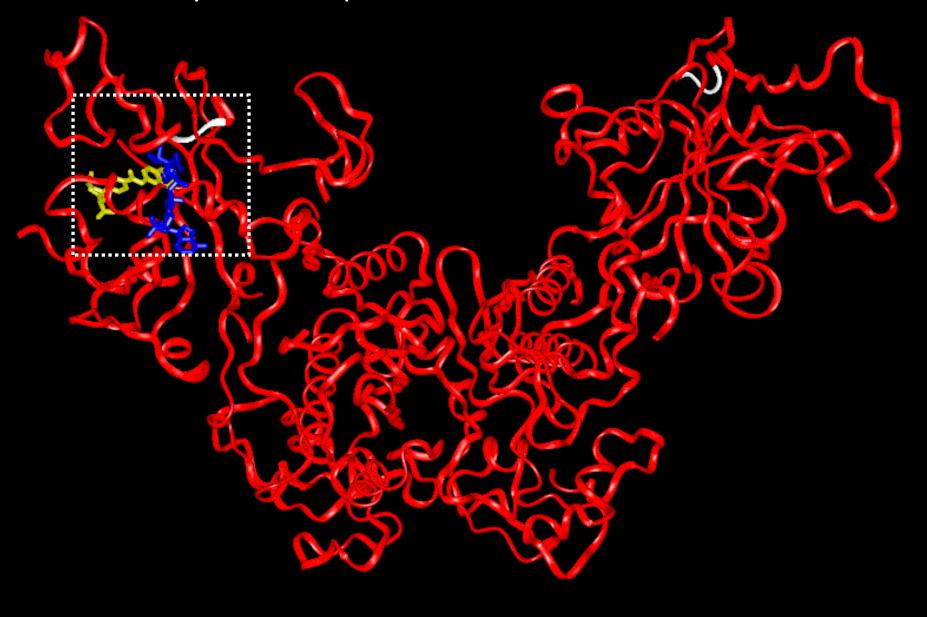
### Resistance: mechanisms and status

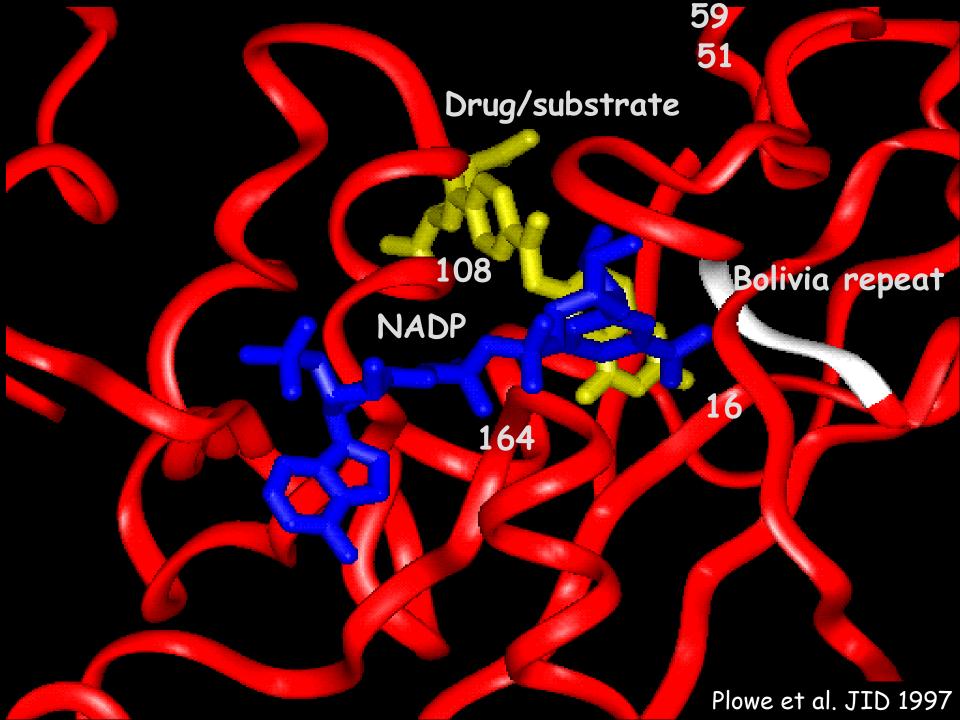

| Drug                                    | Resistance mechanism                                                                               | Current status of resistance                                                                                           |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| SP                                      | DHFR, DHPS mutations                                                                               | High level resistance in Asia and S America<br>"Moderate" resistance in Africa                                         |
| Chloroquine                             | Conferred by Pfcrt mutations,<br>modulated by Pfmdr1 mutations                                     | Resistance nearly everywhere except Latin<br>America, Middle East; Receding in Africa?                                 |
| Quinine,<br>Mefloquine,<br>Lumefantrine | Pfmdr1 mutations, copy number,<br>expression levels, other<br>membrane transporters?               | Modest levels in Asia, patchy elsewhere<br>Mefloquine resistance reversed by combination<br>with artemisinins          |
| Amodiaquine                             | Pfcrt, Pfmdr1 mutations?                                                                           | Limited data; increasing resistance in Africa?                                                                         |
| Piperaquine                             | Unknown; conflicting data on cross resistance with other quinolines                                | Increased IC50s and treatment failures<br>reported after widespread use in China<br><i>No recent data from SE Asia</i> |
| Pyronaradine                            | Unknown                                                                                            | Unknown                                                                                                                |
| Atovaquone/<br>proguanil                | Cytochrome B/DHFR mutations?                                                                       | Few reported cases in returned travelers                                                                               |
| Artemisinins                            | Pfmdr1 mutations, copy number,<br>expression levels; PfATPase6<br>mutations? Non-heritable traits? | Suspected tolerance/resistance in SE Asia                                                                              |

### Resistance-conferring mutations

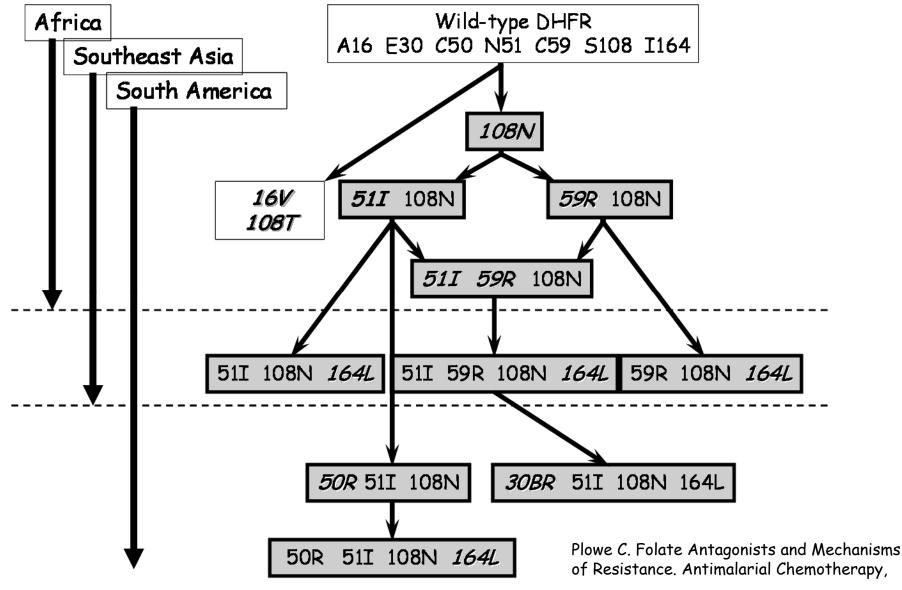
- Appearance
  - "Blink" on but fail to persist
- Emergence
  - Stable local persistence
- Dissemination
  - Geographic spread

Dave Smith, Kruger, Yesterday


### Rapid selection of antifolate resistance suggested frequent local emergence

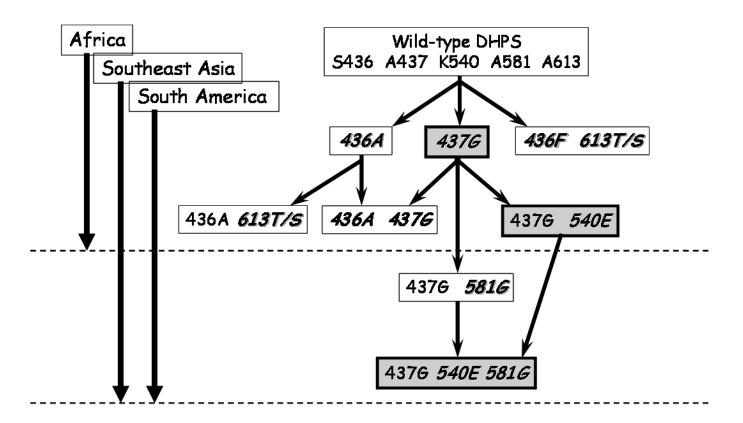



#### Clyde and Shute, TRSTMH 1954


6. 2. The Mkuzi area, showing pyrimethamine resistant *P. falciparum* rates of children aged 6-10 at time of greatest incidence of the resistant parasite.

Pyrimethamine resistance is caused by mutations in *P. falciparum* dihydrofolate reductase (DHFR)






### DHFR mutations emerge in a stepwise fashion



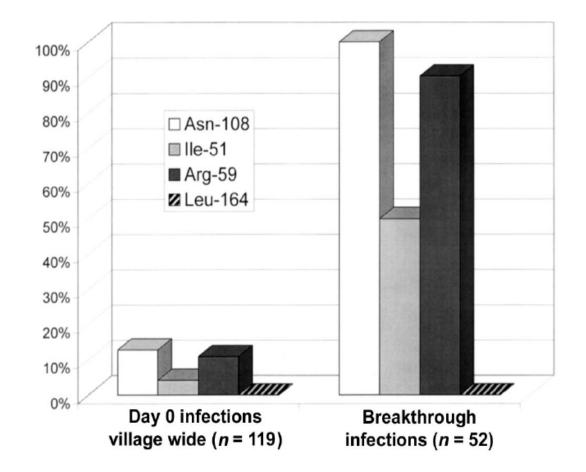
Humana Press, 2001

Sulfadoxine resistance is caused by stepwise accumulation of mutations in *P. falciparum* dihydropteroate synthase (DHPS)



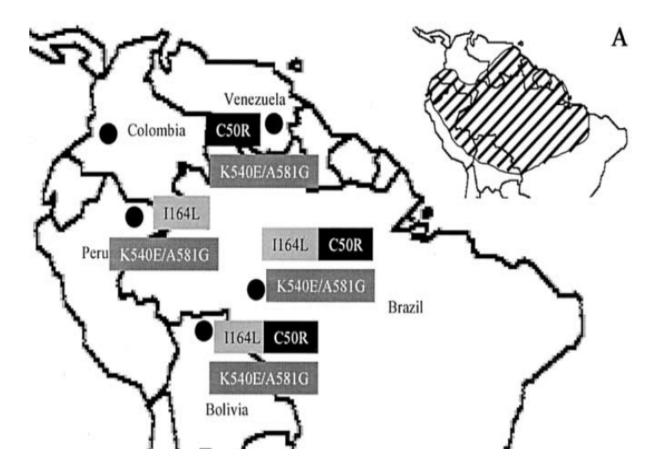
DHFR triple + DHPS double = SP resistant (Africa) DHFR quadruple = SP resistant (Asia, S. America)

### Resistance is not an all-or-none phenomenon and mutations can both confer resistance <u>and</u> compensate for fitness loss


| Strain | 16 | 51 | 59 | 108 | 164 | Pyrimethamine<br>IC50 | Effect on<br>Fitness*                         |
|--------|----|----|----|-----|-----|-----------------------|-----------------------------------------------|
| 3D7    | А  | Ν  | С  | S   | Ι   | 1                     |                                               |
| HB3    | А  | N  | С  | N   | Ι   | 331                   | $\downarrow$                                  |
| lt.D12 | А  | Т  | С  | N   | Ι   | 755                   | ↑                                             |
| K1     | А  | N  | R  | N   | Ι   | 1048                  | $\downarrow\downarrow\downarrow$              |
| Dd2    | А  | 1  | R  | N   | Ι   | 2371                  | $\downarrow \downarrow \downarrow \downarrow$ |
| V1/S   | А  | I  | R  | N   | L   | 22477                 | _ ↑↑↑                                         |

#### Amino acid position

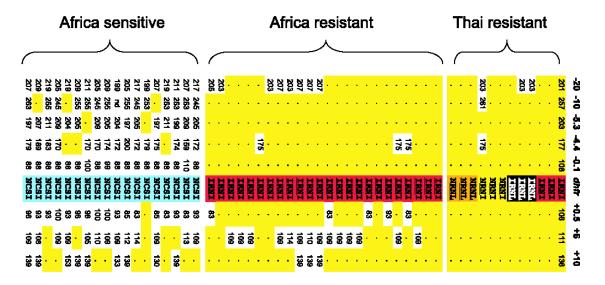
\*Relative to previous mutation Sirawaraporn et al. PNAS 1997


Iyer et al. Lancet 2001

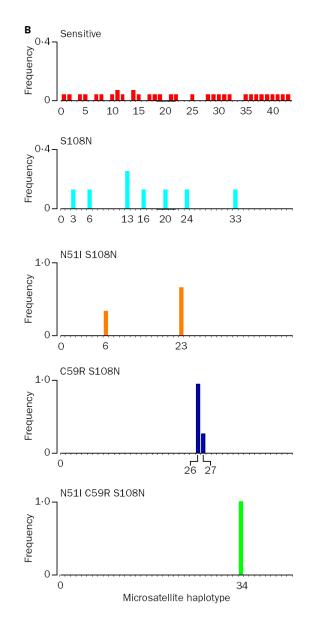
### Selection of DHFR mutations during 6 weeks of pyrimethamine prophylaxis



Doumbo et al. JID 2000


High-level antifolate resistance spread in a genetic sweep across the Amazon region




Cortese et al., JID 2002

### "Moderate" pyrimethamine resistance (DHFR triple mutant) disseminated in a

### single genetic sweep



Roper et al., Lancet 2004, Science 2004



#### Figure 2: *dhfr* in 1995 and 1999 in Ingwavuma district, KwaZulu-Natal, South Africa

(A) Changes in frequency of allelic haplotypes. Curves were drawn by computation of frequency changes based on relative fitness values.(B) Allele associated microsatellite polymorphism in the flanking region.

### Inexorable, contiguous spread of chloroquine resistance from limited foci suggested rare, complex genetic event

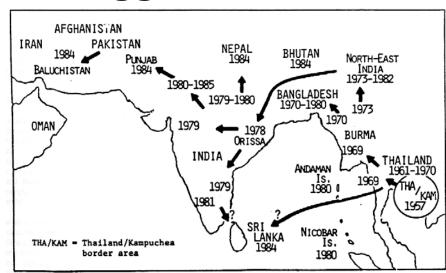



FiG. 4 Chronological spread of chloroquine-resistant falciparum malaria westwards in Asia.

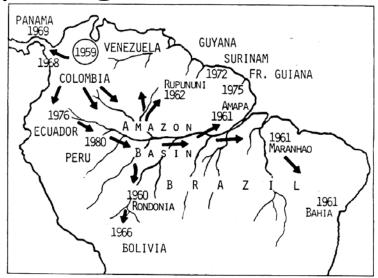
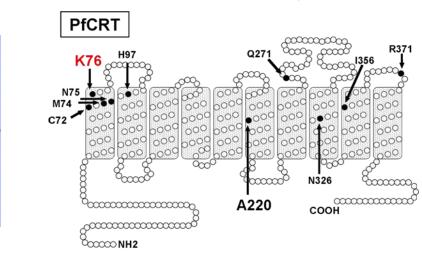
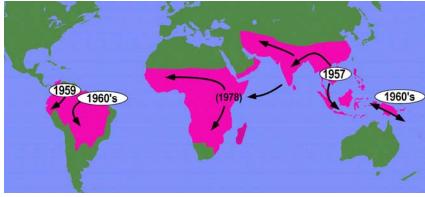
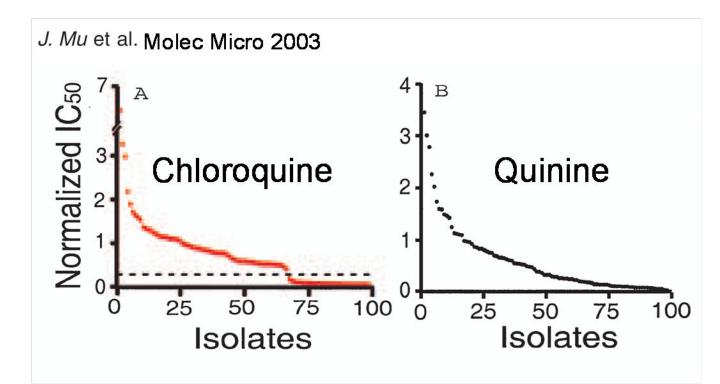





Figure 1 Chronological spread of chloroquine-resistant falciparum malaria in the American region.

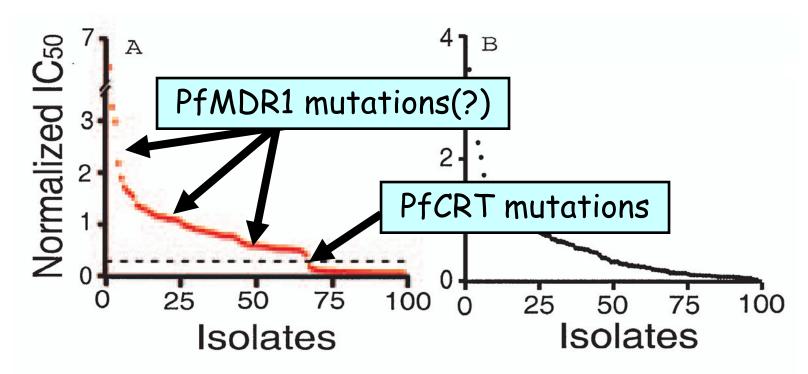





# Chloroquine resistance is conferred by a single mutation that must occur in a milieu of presumably compensatory mutations

|                        |    | PFCRT position & encoded amino acid |    |    |    |     |     |     |     |     |  |  |  |
|------------------------|----|-------------------------------------|----|----|----|-----|-----|-----|-----|-----|--|--|--|
| Parasite type & origin | 72 | 74                                  | 75 | 76 | 97 | 220 | 271 | 326 | 356 | 371 |  |  |  |
| Chloroquine sensitive  |    |                                     |    |    |    |     |     |     |     |     |  |  |  |
| "wild type"            | С  | Μ                                   | Ν  | Κ  | Н  | Α   | Q   | Ν   | I   | R   |  |  |  |
| 106/1 (revertant?)     | С  | I                                   | Е  | K  | н  | S   | Е   | 5   | I   | I   |  |  |  |
| Chloroquine resistant  |    |                                     |    |    |    |     |     |     |     |     |  |  |  |
| SE Asia & Africa E1a   | С  | I                                   | Е  | T  | Н  | S   | Е   | S   | Т   | I   |  |  |  |
| SE Asia & Africa E1b   | С  | I                                   | Е  | T  | Н  | S   | Е   | 5   | I   | I   |  |  |  |
| Papua New Guinea P1    | S  | Μ                                   | Ν  | Τ  | Н  | S   | Q   | D   | L   | R   |  |  |  |
| South America W1a      | S  | Μ                                   | Ν  | T  | Н  | S   | Q   | D   | L   | R   |  |  |  |
| South America W1b      | С  | M                                   | Ν  | Τ  | Н  | S   | Q   | D   | L   | R   |  |  |  |
| South America W2       | С  | M                                   | Е  | Τ  | Q  | S   | Q   | Ν   | I   | Т   |  |  |  |

Wellems & Plowe 2001: Fidock et al. 2000, Chen et al. 2001


## Resistance can be categorical, continuous, or both



Implications for mechanisms, and for appearance, emergence, and dissemination •Multigenic resistance easily broken up by recombination

## Resistance can be categorical, continuous, or both

J. Mu et al. Molec Micro 2003

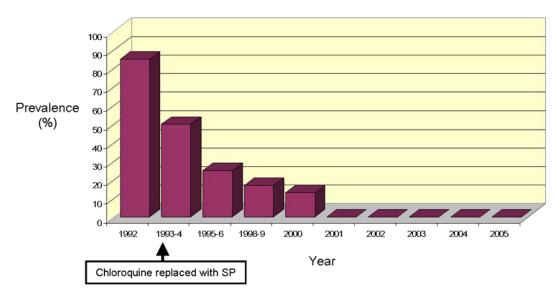


Implications for mechanisms, and for appearance, emergence, and dissemination

# Chloroquine resistance spread in wide regional genetic sweeps

| kb             | from pfcrt                                                                             | -104              | 4 <b>-</b> 96                           | -24                                    | -20                       | -13                       | -11                                    | -5                | -1                                |             |                  |             |                            |              |                    |          |                            |                                           |             | 1                                           | 6               | 8          | 22                           | 24                | 86                 | 106                                          |
|----------------|----------------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------------------------------------|---------------------------|---------------------------|----------------------------------------|-------------------|-----------------------------------|-------------|------------------|-------------|----------------------------|--------------|--------------------|----------|----------------------------|-------------------------------------------|-------------|---------------------------------------------|-----------------|------------|------------------------------|-------------------|--------------------|----------------------------------------------|
| Par            | MS                                                                                     | BM25              | PE14D                                   | B5M97                                  | B5M77                     | 1H6                       | 3E7                                    | 2E10              | B5M47                             | 72          | 74               | 75          | AA 1<br>20                 | bositi<br>26 | 520 i              | n PfC    | 326<br>326                 | 356                                       | 371         | 9B12                                        | PE12A           | PS590      | 2H4                          | 7A11              | PE14E              | PE14F                                        |
|                | P.vivax<br>P. berghei<br>P. reichenowi<br>P.f.CQS Isolates                             |                   |                                         |                                        |                           |                           |                                        |                   |                                   | 0000        | MMMM             | ZZZZ        | хххх                       | TIT          | S<br>A<br>A<br>A   | amaa     | ~ ~ ~ ~ ~                  |                                           | M<br>R<br>R |                                             |                 |            |                              |                   |                    |                                              |
| Brazil<br>Peru | 7G8, DIV14/17/30<br>PC04/15/26/49<br>ECP<br>PC17<br>PAD<br>CS                          | 243<br>           | 121                                     | 155<br>-<br>-<br>-<br>-                | 142<br>-<br>-<br>-<br>144 | 202<br>-<br>-<br>-<br>204 | 171                                    | 181<br>185<br>183 | 158<br>-<br>-<br>-<br>-           | 0 0 0 0 0 0 | M<br>M<br>M<br>M | zzzzz       |                            |              | <b>ທ ທ ທ ທ ທ</b> ທ | 00000    | מסממס                      |                                           |             | 161<br>-<br>-<br>-<br>-                     | 307             | 116<br>120 | 184<br>                      | 96<br>-<br>-<br>- | 116<br>-<br>-<br>- | 13                                           |
| Col            | ECU<br>JAV<br>PNG3                                                                     | 243<br>243<br>243 | 115<br>115<br>130                       | 155<br>155<br>157                      | 142<br>140<br>140         | 222<br>218<br>206         | 181<br>-<br>165                        | 183<br>-<br>165   | 160<br>-<br>152                   | C<br>C<br>S | M                | N<br>E<br>N | Ť<br>T<br>T                | HQH          | S<br>S<br>S        | aaa      | D<br>N<br>D                | L<br>L                                    | R<br>T<br>R | 156<br>-<br>161                             | 307<br>-<br>322 | 102        | 174                          | 96<br>-<br>105    | 116                | 14<br>12<br>13                               |
| PNG            | PNG13<br>PNG2<br>PNG4                                                                  | 241               | -                                       | 159<br>159                             | 142                       | 206<br>212                | 163                                    | 171               | Ξ                                 | SSS         | M                |             | T                          | HHH          | S<br>S<br>A        | 000      | DDD                        | L                                         | R<br>R<br>R | 1                                           | 1               | 134        | Ξ                            | 100               | 116                | -                                            |
| Africa         | V1/S<br>FCB, FCR3, PAR<br>106/1/ CQS<br>124/8<br>P31<br>123/5,128/4<br>D5<br>M2<br>Dd2 | 243               | 115                                     | 159<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 140                       | 206                       | 173<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 161               | 156<br>-<br>-<br>-<br>-<br>-<br>- | 0000000000  |                  |             |                            | TITITI       | ດດາດດາດດາດ         | шшшшшшшш | ~~~~~~~                    |                                           |             | 166<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 307             | 141        | 194<br>-<br>-<br>-<br>-<br>- | 115               | 116                | 13<br>12<br>12<br>14                         |
| Asia & /       | TM284<br>C2B,C2A<br>JCK<br>THA19<br>S35CQ<br>TM91C<br>102/1<br>9013,9020<br>THA16      | 247               | -<br>-<br>-<br>130<br>121<br>121<br>133 |                                        |                           |                           |                                        |                   |                                   | 0000000000  |                  |             | <b>T T T T T T T T T</b> T |              | <b>ທູດທູດທູດທູ</b> | шшшшшшш  | ທ ທ ທ <mark>Z</mark> ທ ທ ທ | TTTT<br>TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |             | 163                                         |                 | 143<br>136 | 174<br>204<br>167            | 105               | 119                | 14<br>14<br>13<br>14<br>13<br>13<br>12<br>13 |
|                | M97<br>KMWII                                                                           | 261<br>245        | 136<br>118                              | 155<br>157                             | 151<br>151                | 196<br>211                | -<br>187                               | 1                 | -                                 | 000         | i                | Ē           | Ť                          | H<br>H       | SS                 | E        | S                          | İ                                         | i           | -                                           | -               | 1          | 1                            | 1                 | -                  | 13                                           |

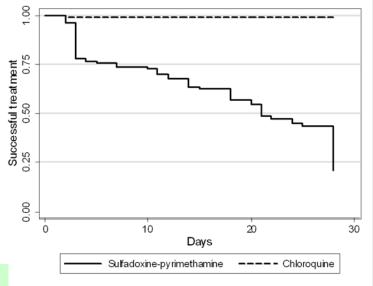
Ancestral Mutant (Asia/Africa)


а

Mutant (South America/PNG)

Wootton et al. Nature 2002

## Chloroquine sensitivity returned rapidly after cessation of chloroquine use in Malawi


Figure 1. Prevalence of PfCRT chloroquine resistance marker in Blantyre, Malawi 1992-2005



Kublin et al., JID 2003

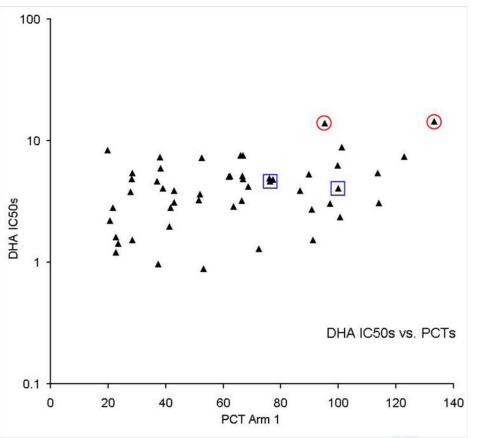
This was not predicted based on mathematical and in vitro models

Figure 2. Time to treatment failure in clinical trial of chloroquine vs. sulfadoxinepyrimethamine efficacy for treatment of uncomplicated falciparum malaria in children aged <5 years in Blantyre, 2005



Laufer et al., NEJM 2006

# Will resistance to other drugs do the same thing?


- It should not be assumed that other resistance mechanisms have a similar fitness cost, or <u>any</u> fitness cost, after evolution of compensatory mutations
  - *E. coli* model suggests resistance will remain fixed
- SP resistance has stayed fixed in SE Asia and South America
  - Due to low transmission? No fitness cost?
    Compensatory mutations? Ongoing antifolate pressure?

## Microsatellite typing: Expansion of diverse sensitive parasites

Table 1: Microsatellite markers flanking PfCRT, the molecular marker for chloroquine resistance

| 1          |      |     |     |       |      |      |          |      |       |       |
|------------|------|-----|-----|-------|------|------|----------|------|-------|-------|
|            | Year | -55 | -29 | -10.8 | -4.4 | -2.8 | pfcrt 76 | +0.6 | +10.4 | +39.6 |
|            | 1992 | 137 | 147 | 175   | 228  | 178  | Т        | 149  | 200   | 193   |
|            | 1992 | 135 | 147 | 175   | 228  | 178  | Т        | 149  | 190   | 193   |
| t          | 1994 | 139 | 147 | 175   | 228  | 178  | Т        | 149  | 200   | 193   |
| sta        | 1995 | 135 | 149 | 175   | 228  | 178  | Т        | 149  | 200   | 193   |
| Resistant  | 1995 | 145 | 147 | 175   | 228  | 178  | Т        | 149  | 190   | 193   |
| L R        | 1997 | 135 | 147 | 175   | 228  | 178  | Т        | 149  | 200   | 203   |
|            | 1997 | 137 | 147 | 175   | 228  | 178  | Т        | 149  | 200   | 193   |
|            | 1997 | 135 | 147 | 175   | 228  | 178  | Т        | 149  | 200   | 185   |
|            |      |     |     |       |      |      |          |      |       |       |
|            | 1993 | 139 | 147 | 185   | 228  | 176  | ĸ        | 155  | 193   | 193   |
|            | 1995 | 135 | 147 | 175   | 228  | 174  | K        | 153  | 200   | 193   |
|            | 1995 | 135 | 147 | 181   | 228  | 172  | K        | 145  | 200   | 193   |
|            | 1997 | 135 | 150 | 177   | 228  | 186  | K        | 147  | 200   | 203   |
| e l        | 1997 | 137 | 149 | 173   | 220  | 170  | K        | 147  | 187   | 193   |
| ptij       | 1997 | 135 | 147 | 177   | 232  | 184  | К        | 143  | 200   | 185   |
| usceptible | 2005 | 135 | 147 | 171   | 230  | 178  | K        | 139  | 202   | 195   |
| sn         | 2005 | 139 | 149 | 183   | 228  | 186  | ĸ        | 167  | 187   | 203   |
| S          | 2005 | 131 | 147 | 193   | 228  | 182  | К        | 143  | 196   | 193   |
|            | 2005 | 137 | 149 | 173   | 228  | 184  | К        | 147  | 197   | 195   |

### Artemisinin resistance in western Cambodia?



H. Noedl, M. Fukuda et al., submitted 2008

- In 2006, 60 falciparum malaria cases treated with 7 days of artesunate 4 mg/kg
- Four treatment failures between days 21-28
- Two met all criteria for resistance
- Not associated with mutations in candidate genes PfMDR1, PfATPase6
- Microsatellite typing confirms recrudescence

### Population structure and gene flow

- Microsatellite typing of parasites from Western Cambodia and Eastern Thailand
- Population structure: Do the parasites at the two sites represent two distinct populations?
- Fst = (total heterozygosity minus mean heterozygosity within subpopulations)/total heterozygosity
- Measure of genetic differentiation between populations
  - Fst = 0.021, p=0.0166 ± 0.0039 (1000 permutations)
  - Some differentiation between sites, but a lot of gene flow
  - Implications for containment
- If malaria is an island, parasites can island-hop
- Therefore start malaria eradication here!

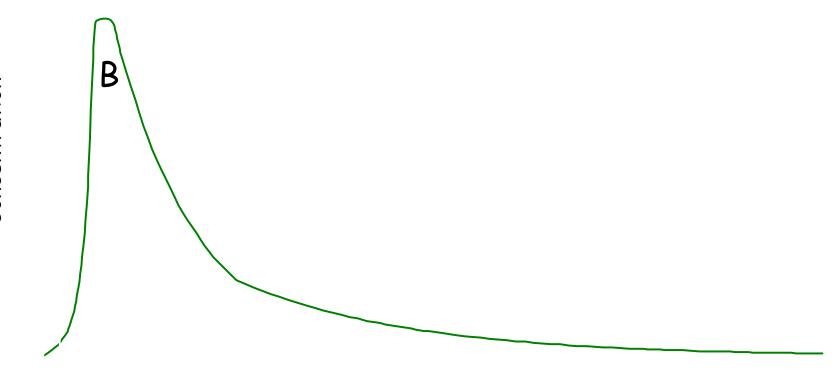
Mechanisms of resistance and implications for Multiple First-line Therapies

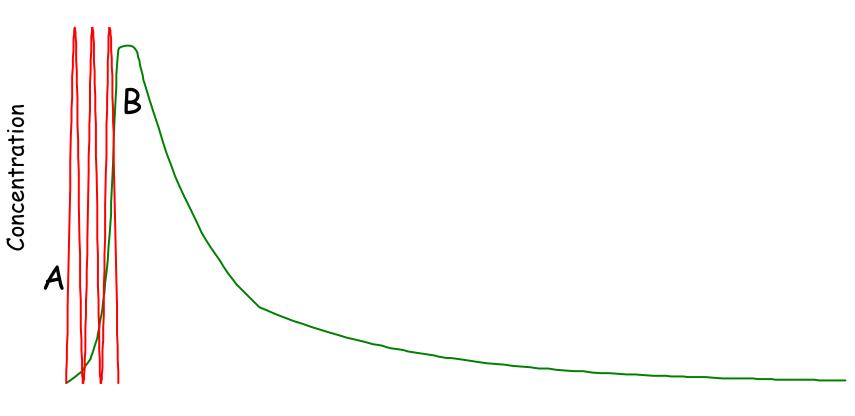
Some approaches to deterring resistance

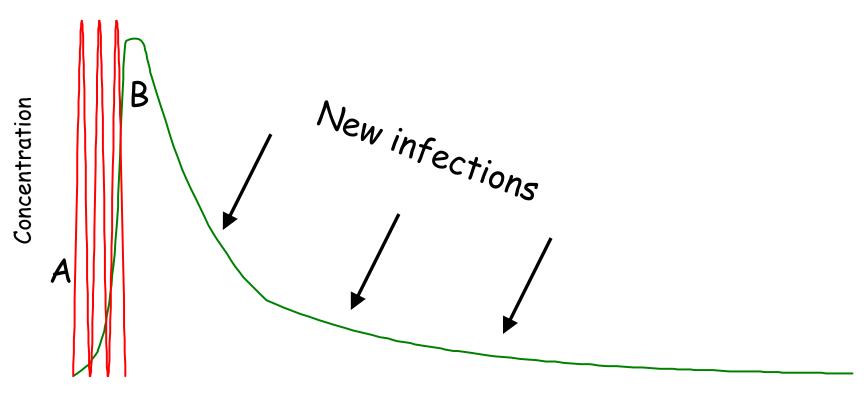
Chloroquine in Malawi as a model for combination partner drugs

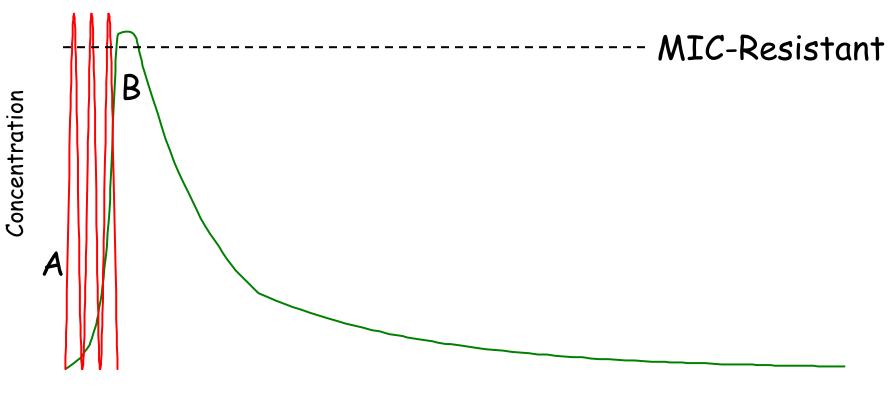
- High efficacy but resistance likely to return
- Easy to detect and quantify returning resistance:
  - PfCRT T76 molecular resistance marker
- Develop approaches to prevent resistance to all partner drugs (not just artemisinins)

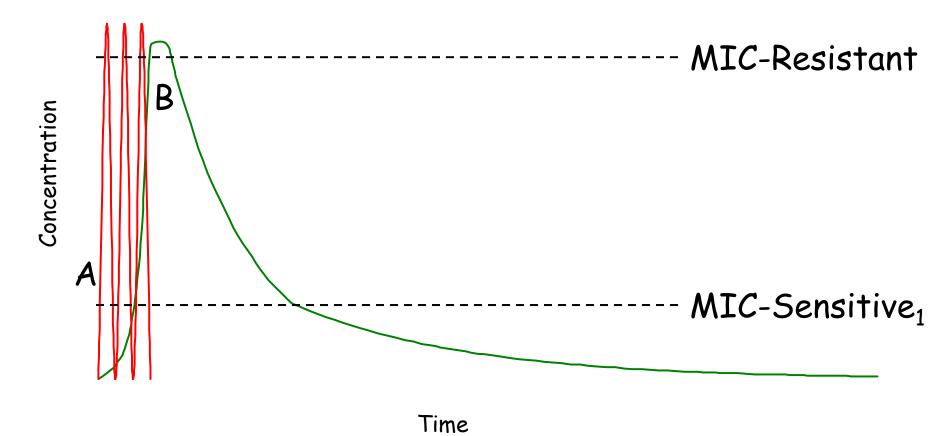
# Longitudinal trial of chloroquine combinations

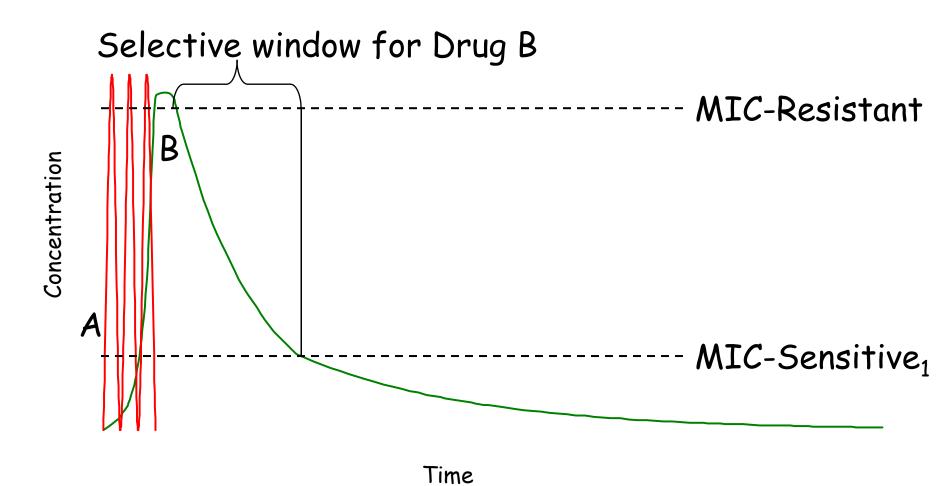

- Children with acute malaria randomized to
  - CQ alone
  - CQ + artesunate
  - CQ + azithromycin
  - CQ + atovaquone/proguanil
- Treated with same combination for every malaria episode for 1 year
  - Compare incidence of clinical malaria episodes
  - Compare ability of partner drugs to deter (re)emergence of resistance
  - Define "selective window\*" for chloroquine

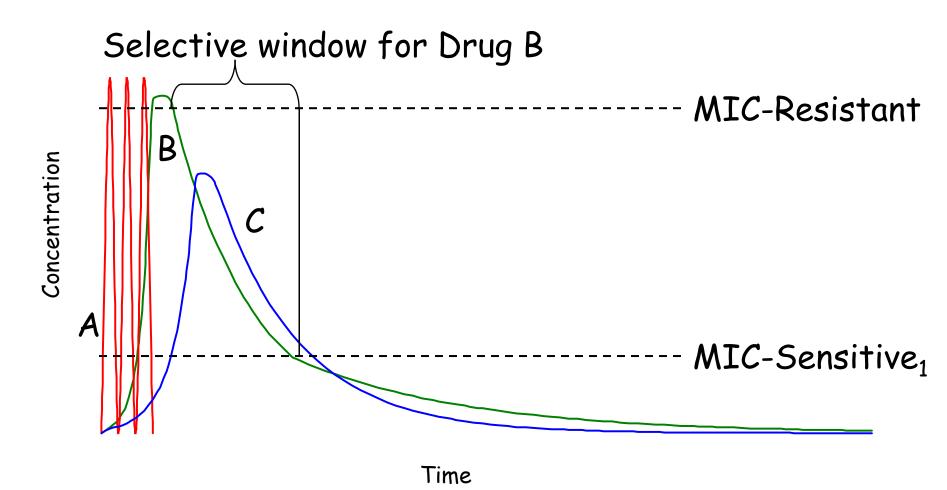

\*Hastings & Watkins Trends Parasitol 2006

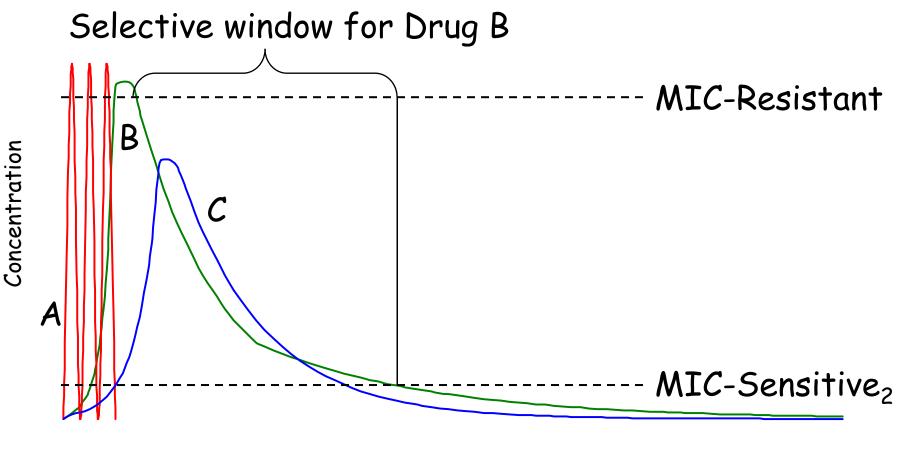

# Concentration

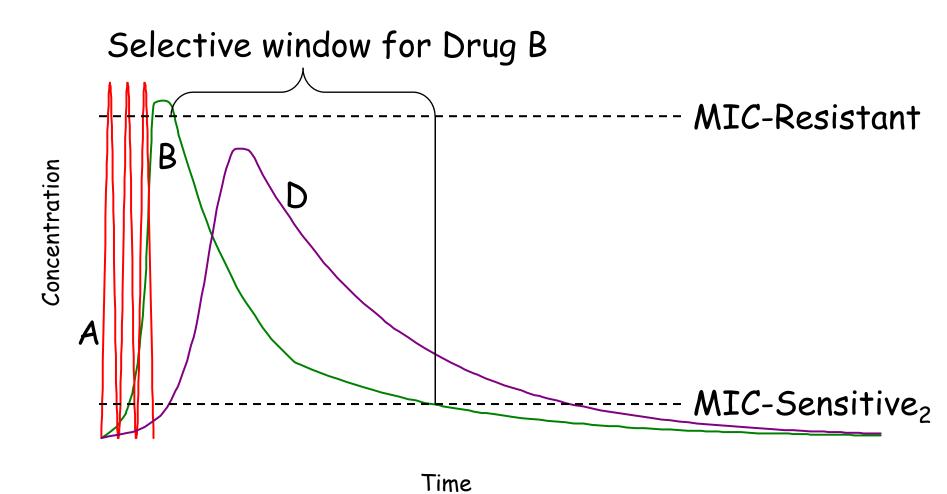

### Acknowledgments:


- Ian Hastings
- Bill Watkins
- Nick White



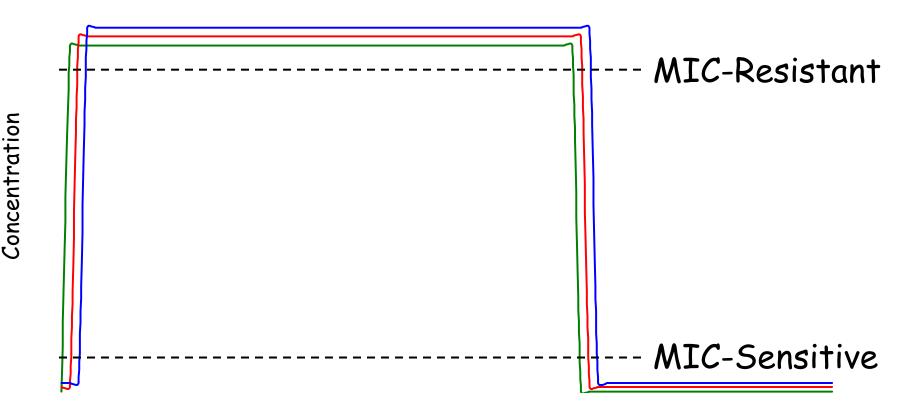





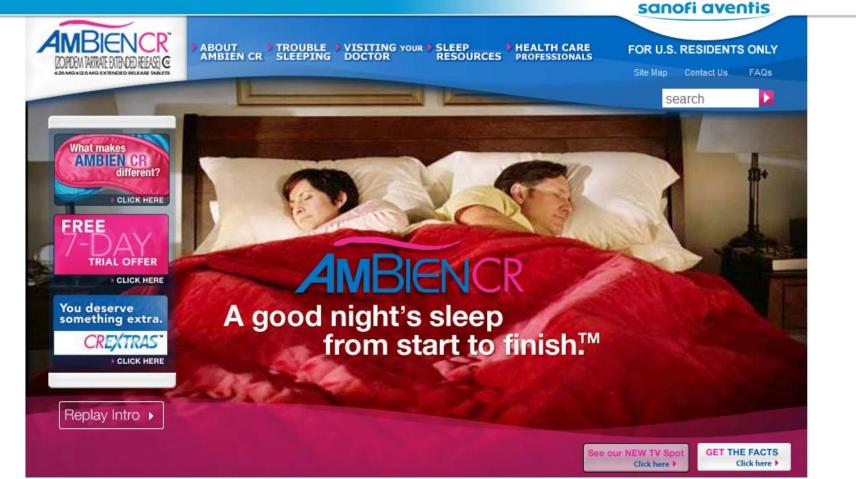







### Selective windows


- Defined only for 2 antimalarial drugs
  - Pyrimethamine: 52 days (Watkins & Mosobo 1993)
  - Lumefantrine: 30 days (Hastings & Ward 2005)
- To design combinations with long useful therapeutic lives, need to know selective windows, MICs and durations of action
- Include pharmcokinetic, pharmacodynamic and resistance measures in clinical efficacy trials

### The ideal antimalarial drug combination

- Combine drugs with different mechanisms to deter resistance
- Rapid onset to resolve illness
- Long action to allow single dosing and prevent new illness
- Rapid elimination to prevent selection of resistance



### Is malaria as important as insomnia?



Lineuheerihe

### Controlled-release antimalarials?

- Both rapidly and slowly released components
  - Rapid release to ensure cure
  - Slow release for single dosing and avoid subtherapeutic selective concentrations
  - Used with popular sleep aids
- "Repository" formulations (Peters 1970)
  - Depot injection of cycloguanil provided 6+ months protection against experimental challenge with vivax and falciparum (Contacos et al. 1966)
- Liposomal artesunate (Gabriels & Plaizier-Vercammen 2003)
- Too expensive? In the context of malaria eradication, maybe not...

### Summary

- Resistance evolves through various and unpredictable mechanisms
  - Frequent local tolerance  $\rightarrow$  rare resistance  $\rightarrow$  global spread
  - Rare resistance  $\rightarrow$  global spread  $\rightarrow$  secondary modulation
- Malaria "C" and "E" may foster emergence, dissemination and persistence of resistance and this should be anticipated
  - Africa: the new Asia?
- Combinations should protect non-artemisinin partners against resistance
  - Matching half-lives is too simplistic
  - Need to define selective windows and MICs
- Novel pharmacologial approaches are needed to deter resistance

**In your folder:** Nyunt MM and Plowe CV. Pharmacologic advances in the global control and treatment of malaria: Combination therapy and resistance. *Clinical Pharmacology & Therapeutics* 82(15):601-605, 2007.

### Thanks:

University of Maryland

- Miriam Laufer
- Shannon Takala
- Phil Thesing
- Chuka Didigu
- Licheng Zhao

#### Johns Hopkins

- Myaing Nyunt
  Blantyre Malaria Project
- Terrie Taylor
- Fraction Dzinjalamala
  AFRIMS
- Harald Noedl
- Mark Fukuda



#### NIAID

Doris Duke Charitable Foundation Howard Hughes Medical Institute My parents

